

Cryptanalytic Attacks
on RSA

Cryptanalytic Attacks
on RSA

by

Song Y. Yan
University of Bedfordshire, UK

and
Massachusetts Institute of Technology, USA

Song Y. Yan, PhD
Professor of Computer Science and Mathematics
Director, Institute for Research in Applicable
Computing
University of Bedfordshire
Bedfordshire LU1 3JU
UK
song.yan@beds.ac.uk
and
Visiting Professor
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
USA
syan@math.mit.edu

ISBN-13: 978-0-387-48741-0 e-ISBN-13: 978-0-387-48742-7

Library of Congress Control Number: 2007934650

© 2008 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

Dedicated to Professor Glyn James

on the occasion of his 70th birthday

with gratitude for his encouragement and support

Table of Contents

Preface . xi

Notations . xv

1. Computational/Mathematical Preliminaries 1
1.1 Introduction . 1
1.2 Computability, Complexity and Intractability 4
1.3 Efficient Number-Theoretic Algorithms . 15
1.4 Intractable Number-Theoretic Problems . 41
1.5 Chapter Notes and Further Reading . 54

2. RSA Public-Key Cryptography . 55
2.1 Introduction . 55
2.2 Public-Key Cryptography . 60
2.3 RSA Public-Key Cryptography . 66
2.4 RSA Problem and RSA Assumption . 71
2.5 RSA-Type Crytposystems . 73
2.6 Chapter Notes and Further Readings . 88

3. Integer Factorization Attacks . 91
3.1 Introduction . 91
3.2 Fermat Factoring Attack . 93
3.3 The “p± 1” and ECM Attacks . 94
3.4 Quadratic Sieve Attack . 98
3.5 Successful QS Attack . 103
3.6 Number Field Sieve Attack . 105
3.7 Chapter Notes and Further Reading . 110

4. Discrete Logarithm Attacks . 111
4.1 Introduction . 111
4.2 Baby-Step Giant-Step Attack . 115
4.3 Silver–Pohlig–Hellman Attack . 118
4.4 Index Calculus Attacks . 122
4.5 Xedni Calculus Attack . 127

viii Table of Contents

4.6 Chapter Notes and Further Reading . 132

5. Quantum Computing Attacks . 135
5.1 Introduction . 135
5.2 Order Finding Problem . 137
5.3 Quantum Order Finding Attack . 139
5.4 Quantum Integer Factorization Attack . 142
5.5 Quantum Discrete Logarithm Attack . 146
5.6 Chapter Notes and Further Reading . 148

6. Simple Elementary Attacks . 149
6.1 Introduction . 149
6.2 Guessing Plaintext Attacks . 150
6.3 Blinding Attack on RSA Signatures . 151
6.4 Guessing φ(N) Attack . 152
6.5 Guessing d Attack . 155
6.6 eth Root Attack . 159
6.7 Common Modulus Attack . 161
6.8 Fixed-Point Attack . 164
6.9 Chapter Notes and Further Readings . 166

7. Public Exponent Attacks . 169
7.1 Introduction . 169
7.2 A Theorem of Coppersmith . 170
7.3 Short e Attacks for Same Messages . 173
7.4 Short e Attacks for Related Messages . 177
7.5 Lattice Attack for Stereotyped Messages . 183
7.6 Chapter Notes and Further Reading . 187

8. Private Exponent Attacks . 189
8.1 Introduction . 189
8.2 Diophantine Attack . 190
8.3 Extended Diophantine Attacks . 195
8.4 Small Private CRT-Exponent Attacks . 198
8.5 Partial Private Key Exposure Attacks . 201
8.6 Chapter Notes and Further Reading . 205

9. Side-Channel Attacks . 207
9.1 Introduction . 207
9.2 Modular Exponentiation Revisited . 208
9.3 Timing Attacks . 209
9.4 Time Attacks on RSA in OpenSSL . 212
9.5 Power (Analysis) Attacks . 215
9.6 Random Fault Attacks . 216
9.7 Chapter Notes and Further Reading . 222

Table of Contents ix

10. The Road Ahead . 223
10.1 Introduction . 223
10.2 Elliptic Curve-Based Cryptography . 224
10.3 Coding-Based Cryptography . 225
10.4 Lattice-Based Cryptography . 227
10.5 Quantum Cryptography . 229
10.6 Conclusions . 230
10.7 Chapter Notes and Further Reading . 232

Bibliography . 233

Index . 251

About the Author . 255

Preface

The art of war teaches us to rely not on the likelihood of the enemy’s
not coming, but on our own readiness to receive him; not on the
chance of his not attacking, but rather on the fact that we have made
our position unassailable.

Sun Tzu
The Art of War (500 BC)

The book is about the cryptanalytic attacks on RSA. RSA is the first work-
able and practical public-key cryptographic system, invented in 1977 and
published in 1978, by Rivest, Shamir and Adleman, then all at the Mas-
sachusetts Institute of Technology (MIT), and is still the most widely used
cryptographic systems in e.g., online transactions, emails, smartcards, and
more generally electronic and mobile commerce over the Internet, for which
its three inventors received the year 2002 Turing Award, a prize considered
to be the equivalent Nobel Prize for Computer Science. The security of RSA
relies on the computational intractability of the Integer Factorization Prob-
lem (IFP), for which, no efficient (i.e., polynomial-time) algorithm is known.
To get an idea how difficult the integer factorization is, let us consider the
following 2048 bits (617 digits) composite number, known as RSA-2048:

251959084756578934940271832400483985714292821262040320277771378360
436620207075955562640185258807844069182906412495150821892985591491
761845028084891200728449926873928072877767359714183472702618963750
149718246911650776133798590957000973304597488084284017974291006424
586918171951187461215151726546322822168699875491824224336372590851
418654620435767984233871847744479207399342365848238242811981638150
106748104516603773060562016196762561338441436038339044149526344321
901146575444541784240209246165157233507787077498171257724679629263
863563732899121548314381678998850404453640235273819513786365643912
12010397122822120720357.

It is a product of two prime numbers. The RSA Data Security Incorpora-
tion currently offers a $200,000 prize for the first person or group finding

xii Preface

its two prime factors. The basic idea of RSA encryption and decryption is,
surprisingly, rather simple:

C ≡ Me (mod N), M ≡ Cd (mod N),

where N = pq with p and q prime, M , C, e and d are the plaintext, ciphertext,
encryption exponent and decryption exponent, respectively. Note that e and d
must be satisfied with the condition that ed ≡ 1 (mod φ(N)), where φ(N) =
(p − 1)(q − 1) is Euler’s φ-function. Let, for example, e = 65537, N be the
above mentioned number RSA-2048, and C the following number:

218598056144555493024019389629177159753811144728543422921500499254
181211032562087679022259831067991286101190897695119357754765408522
697956638242922870637083231694404873947694078432775781998614979942
064361669462614088852741600217233052059574880668463536030287944235
822627708134997061064700771693064600712629809165416998449992925313
374281387325903328781863209595468701560742767599157207314869432305
892651836189508103764678721683360183118994273706398707795480800698
501878875875150532123738006235671958527639461339868604410378449818
383913059864587128396200112815989134558427750667427151537609736712
04647757116059031684587.

To recover M from C one requires to find d; to find d one needs to calculate
φ(N); to calculate φ(N) one needs to factor N . But unfortunately, factorizing
N is intractable when N is large (in the present case, N is a 2048-bit number,
which is far beyond the computing power of any factoring algorithm on any
computer at present); no polynomial-time factoring algorithm is known so
far. Thus, RSA is secure and C is safe since it is difficult to recover M from
C without factoring N . This is essentially the whole idea of RSA! One can
try to decrypt the above given RSA ciphertext C or try to factor the number
RSA-2048 in order to get an idea how difficult it is to break RSA or to factor
a large number.

The book consists of ten chapters. Chapter 1 presents some computational
and mathematical preliminaries, particularly the theory and practice of
tractable and intractable computations in number theory. Chapter 2 intro-
duces the basic concepts and theory of the RSA cryptographic system and its
variants in a broad sense. As the security of RSA is based on the intractabil-
ity of the Integer Factorization Problem (IFP), which is also closely related
to the Discrete Logarithm Problem (DLP), the attacks based on solutions
to IFP problem are discussed in Chapter 3, whereas the attacks based on
solutions to DLP problem are discussed in Chapter 4. As quantum algorithm
is applicable to both the IFP problem and the DLP problem, Chapter 5 will
discuss some quantum attacks on RSA via quantum order finding, quantum
factoring and quantum discrete logarithm solving. Chapter 6 concentrates on
some simple elementary number-theoretic attacks on RSA, including e.g., for-
ward attack, short plaintext attack, common modulus attack and fixed-point

Preface xiii

attack. It is common that to speed-up the computation of RSA encryption, a
short public exponent e is often used. It is also true for the RSA decryption
if a short private exponent d is used. However, the use of short exponent e
or d can be dangerous. So, in Chapter 7 we shall discuss some cryptanalytic
attacks on the short RSA public exponent e, whereas in Chapter 8 we shall
discuss some attacks on the short RSA private exponent d. In Chapter 9, a
completely different type of attacks, namely, the side-channel attacks on RSA,
are discussed. Unlike the mathematical/algorithmic attacks in the previous
chapters, side-channel attacks do not exploit the mathematical properties or
weakness of the RSA algorithm/system itself, but exploit the hardware im-
plementation issues of the system. In other words, these attacks are nothing
to do with the RSA algorithm/system itself but have something to do with
the hardware implementation of the RSA algorithm/system. Chapter 10, the
final chapter, presents some quantum resistant, non-factoring based crypto-
graphic systems as an alternative/replacement to RSA, such as lattice based
and code-based cryptosystems, so that once RSA is proved to be insecure,
there is an immediate replacement to the insecure RSA.

The book is self-contained and the materials presented in the book have
been extensively classroom tested for various courses in Cryptography and
Cryptanalysis at Aston and Coventry Universities in England, and the South
China University of Technology and Nankai University in China. Many parts
of the materials in the book have also been presented in seminars in various
universities around the world. Hence, the book is suitable either as a research
reference for public-key cryptology in general and for RSA cryptology in
particular, or as a graduate text in the field.

Acknowledgments

The author would like to thank Prof Sushil Jajodia of George Mason Univer-
sity, USA, Prof Glyn James and Dr Anne James of Coventry University, UK,
Prof Stephen Cook of the University of Toronto, Canada, and Prof Richard
Brent of Oxford University and Australian National University for their en-
couragement, support and help during the writing of the book. Special thanks
must also be given to Susan Lagerstrom-Fife and Sharon Palleschi, the editors
at Springer in Boston, USA, for their encouragement, support and help.

Parts of book were written while the author visited the following three
places: the Department of Computer Science at the University of Toronto
(UT) in March-April 2005, hosted by Prof Stephen Cook and supported by
UT and the Royal Society London, the Mathematical Science Institute at the
Australian National University (ANU) in October-November 2006, hosted by
Prof Richard Brent and supported by ANU and the Royal Society London,

xiv Preface

and the Department of Mathematics at the Massachusetts Institute of Tech-
nology (MIT) in July-Sept 2007, hosted by Prof Michael Sipser and supported
by MIT.

Special thanks must also be given to Prof Glyn James at Coventry Uni-
versity and Prof Richard Brent at Oxford University and Australian National
University for reading the whole manuscript of the book, to Prof Brain Scot-
ney at Ulster University for his constant encouragement during the writing
of the book, and to Prof Michael Sipser for inviting me to visit and work at
MIT where the book was finally completed.

The struggle between code-makers and code-breakers is endless. The
struggle between attacks and anti-attacks on RSA is also endless as soon
as RSA is till in use. New ideas and new attacks on RSA may be conceived
and invented anytime. So comments, corrections and suggestions on the book,
and new ideas and news attacks on RSA are particularly very welcome from
the readers, and can be sent to any one of my following three email addresses:
song.yan@beds.ac.uk, syan@math.mit.edu, or syan@cs.toronto.edu, so that I
can incorporate them into a future edition of the book. Thank you for your
help in advance.

Cambridge, Massachusetts, August 2007 S. Y. Y.

Notation

All notation should be as simple as the nature of the operations to
which it is applied.

Charles Babbage (1791–1871)
English Mathematician, Philosopher, Mechanical Engineer and

Proto-Computer Scientist

Notation Explanation

—————————————————————————————————–
N or Z+ Set of natural numbers or positive integers:

N = Z+ = {1, 2, 3, · · · }
Z Set of integers:

Z = {0, ±n : n ∈ N}
Z>1 Set of positive integers greater than 1:

Z>1 = {n : n ∈ Z and n > 1}
Q Set of rational numbers:

Q =
{a

b
: a, b ∈ Z and b 6= 0

}

R Set of real numbers:
R = {n + 0.d1d2d3 · · · : n ∈ Z, di ∈ {0, 1, 2, · · · , 9}
and no infinite sequence of 9’s appears}

C Set of complex numbers:
C = {a + bi : a, b ∈ R and i =

√−1}
ZN or Z/NZ Residue classes modulo N :

ZN = Z/NZ = {0, 1, 2, · · · , N − 1}.
Ring of integers. Field if N is prime

ZN [x] Set (ring) of polynomials with integer coefficients,
modulo N

Z[x] Set (ring) of polynomials with integer coefficients

xvi Notation

Z∗N Multiplicative group:
Z∗N = {a ∈ ZN : gcd(a,N) = 1}.

#(Z∗N) or |Z∗N | Order of the multiplicative group

Fp or Zp Finite field with p elements, where p is a prime

Fq Finite field with q = pk a prime power

f(x) Function of x

f−1 Inverse of f

f(x) ∼ g(x) f(x) and g(x) are asymptotically equal(
n
i

)
Binomial coefficient:

(
n
i

)
= n(n− 1)(n− 2) · · · (n− i + 1)

i!∫
Integration

Li(x) Logarithmic integral: Li(x) =
∫ x

2

dt

ln t
n∑

i=1

xi Sum: x1 + x2 + · · ·+ xn

n∏
i=1

xi Product: x1x2 · · ·xn

xk x to the power k

kP kP = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
k summands

, where P is a point (x, y) on

an elliptic curve E : y2 = x3 + ax + b

OE Point at infinity on an elliptic curve E

logb x Logarithm of x to the base b (b 6= 1): x = blogb x

log x Binary logarithm: log2 x

lnx Natural logarithm: loge x, e =
∑
n≥0

1
n! ≈ 2.7182818

exp(x) Exponential of x: ex =
∑
n≥0

xn

n!

a | b a divides b

a - b a does not divide b

gcd(a, b) Greatest common divisor of (a, b)

lcm(a, b) Least common multiple of (a, b)

bxc or [x] Greatest integer less than or equal to x

dxe Least integer greater than or equal to x

Notation xvii

x mod N Remainder: x−N
⌊ x

N

⌋

x = y mod N x is equal to y reduced to modulo N

x ≡ y (mod N) x is congruent to y modulo N

x 6≡ y (mod N) x is not congruent to y modulo N

xk mod N x to the power k modulo N

kP mod N kP modulo N , with P a point on elliptic curve E

ordN (a) Order of an integer a modulo N ;
also denoted by order(a,N)

indg,N (a) Index of a to the base g modulo N

logg a mod N Discrete logarithm of a to the base g modulo N :
logg a mod N = indg,N (a)

π(x) Prime counting function: π(x) =
∑
p≤x

p prime

1

τ(N) Number of (positive) divisors of N : τ(N) =
∑
d|N

1

σ(N) Sum of (positive) divisors of N : σ(N) =
∑
d|N

d

φ(N) Euler’s totient function: φ(N) =
∑

0≤k<N
gcd(k,N)=1

1

λ(N) Carmichael’s function:
λ(N) = lcm (λ(pα1

1), λ(pα2
2), · · · , λ(pαk

k))

if N =
k∏

i=1

pαi
i

ζ(s) Riemann zeta-function: ζ(s) =
∞∏

n=1
n−s,

where s = σ + it, with σ, t ∈ R and i =
√−1(

a

p

)
Legendre symbol, where p is prime

(a

N

)
Jacobi symbol, where n is composite

QN Set of all quadratic residues of N

QN Set of all quadratic nonresidues of N

JN JN =
{

a ∈ Z∗N :
(a

N

)
= 1

}

Q̃N Set of all pseudosquares of N : Q̃N = JN −QN

∼ Asymptotic equality

≈ Approximate equality

∞ Infinity

xviii Notation

=⇒ Implication

⇐⇒ Equivalence

2 Blank symbol; end of proof

t Space

Prob Probability measure

∈ Member of

⊂ Proper subset

⊆ Subset

[q0, q1, q2, · · · , qn] Finite simple continued fraction:

q0 +
1

q1 +
1

q2 +
1

. . . qn−1 +
1
qn

[q0, q1, q2, q3, · · ·] Infinite simple continued fraction:

q0 +
1

q1 +
1

q2 +
1

q3 +
1
. . .

Ck = Pk
Qk

k-th convergent of a continued fraction

P Class of problems solvable in polynomial-time by
a deterministic Turing machine

NP Class of problems solvable in polynomial-time by
a nondeterministic Turing machine

ZPP Class of problems solvable in polynomial-time by
a random Turing machine with zero errors

RP Class of problems solvable in polynomial-time by
a random Turing machine with one-sided errors

BPP Class of problems solvable in in polynomial-time by
a random Turing machine with two-sided errors

co-RP RP-complete problems

co-NP NP-complete problems

PS P Space problems

NPS NP Space problems

CFRAC Continued FRACtion method (for factoring)

ECM Elliptic Curve Method (for factoring)

Notation xix

NFS Number Field Sieve (for factoring)

QS/MPQS Quadratic Sieve/Multiple Polynomial Quadratic
Sieve (for factoring)

ECPP Elliptic Curve Primality Proving

DES Data Encryption Standard

AES Advanced Encryption Standard

DSA Digital Signature Algorithm

DSS Digital Signature Standard

DHM Diffie-Hellman-Merkle key-exchange

RSA Rivest-Shamir-Adleman Encryption

RSAP RSA Problem

IFP Integer Factorization Problem

DLP Discrete Logarithm Problem

ECDLP Elliptic Curve Discrete Logarithm Problem

QRP Quadratic Residuosity Problem

SQRTP Modular Square Root Problem

RFP k-th Root Finding Problem

LLL Lenstra-Lenstra-Lovasz lattice reduction algorithm

SVP Shortest Vector Problem

PNT Prime Number Theory: π(x) ∼ x/ lnx

WWW World Wide Web

M Plaintext space

M M ∈M Plaintext

C Ciphertext space

C C ∈ C Ciphertext

ek Encryption key

dk Decryption key

Eek
(M) Encryption C = Eek

(M)

Ddk
(C) Decryption M = Ddk

(C)

e RSA encryption exponent

d RSA decryption exponent

Ee(M) RSA encryption C = Ee(M) ≡ Me (mod N)

Dd(C) RSA decryption M = Dd(C) ≡ Cd (mod N)

M 7→ Me mod N RSA function

xx Notation

Me 7→ M mod N Inverse of the RSA function

{e,N,C} → {M} Given e ≡ 1/e (mod φ(N)), N = pq, and
C ≡ Me (mod N), find M ≡ Cd (mod N)}

A
conditions/explainations−−−−−−−−−−−−−−−−−−→
conditions/explainations

B

B can be found from A under certain conditions

A
find−−−−−→
hard

B B is hard to find from A

A
find−−−−−→
easy

B B is easy to find from A

A P=⇒ B Given A, B can be solved in polynomial-time

A P⇐⇒ B A and B are deterministic polynomial-time equivalent

O(N) Upper bound: f(N) = O(g(N)) if there exists some
constant c > 0 such that f(N) ≤ c · g(N)

O(Nk) Polynomial-time complexity measured in terms of
arithmetic operations, where k > 0 is a constant

O (
(log N)k

)
Polynomial-time complexity measured in terms of
bit operations, where k > 0 is a constant

O (
(log N)c log N

)
Superpolynomial complexity, where c > 0 is a constant

O (
exp

(
c
√

log N log log N
))

Subexponential complexity:
O (

exp
(
c
√

log N log log N
))

= O
(
N c
√

log log N/ log N
)
,

where c is a constant;

O (exp(x)) Exponential complexity, sometimes denoted by O (ex)

O (N ε) Exponential complexity measured in terms of bit
operations: O (N ε) = O (

2ε log N
)
, ε > 0 is constant

1. Computational/Mathematical Preliminaries

The problem of good cipher design is essentially one of finding diffi-
cult problems, subject to certain other conditions.

Claude E. Shannon (1916–2001)
Father of Information Theory

1.1 Introduction

Problems, particularly intractable number-theoretic problems, are the main
concern of this book, as these problems are intimately connected with public-
key cryptography, particularly RSA public-key cryptography. In fact, the se-
curity of any public-key cryptosystems relies, in one way or another, on the
intractability of some sort of number-theoretic problems, or more generally,
mathematical problems such as problems in arithmetic algebraic geometry.

From a modern computer science point of view, problems may be classi-
fied into two categories: solvable or computable problems, and unsolvable or
uncomputable problems. The solvable problems can further be divided into
two subcategories (see Figure 1.1): tractable or feasible problems, and in-
tractable or infeasible problems. Informally, a problem is solvable if it can
be solved by a Turing machine, or otherwise, it is unsolvable. A problem
is tractable (easy) if it can be solved in polynomial-time by a deterministic
Turing machine, or otherwise, it is intractable (hard).

It should be noted that problems solvable in polynomial-time on a Turing
machine are exactly the same as the problems solvable in polynomial-time
on a typical computer. This implies that Turing machines (or algorithms,
effective procedures) and computers are equivalent concepts, and we shall
use them interchangeably. It should be also noted that the classification of
problems solvable in polynomial-time (i.e., tractable or feasible) and unsolv-
able in polynomial-time e.g., solvable in exponential-time (i.e., intractable
or feasible) is fundamental in computer science. However, there is no clear

2 1. Computational/Mathematical Preliminaries

Intractable

Problems

Solvable Unsolvable

Tractable

Figure 1.1. Taxonomy of Problems

cut between tractable and intractable problems. To delineate the boundary
between the two types of problems is, in fact, the famous P versus NP Prob-
lem, a one-million US dollar millennium prize problem, offered by the Clay
Mathematical Institute in Boston [73].

In public-key cryptography, particularly RSA public-key cryptography, we
are interested in both tractable and intractable number-theoretic problems
and their computations. For example, for an authorized user, the encryption
and decryption should be all intractable for him, however, for an unautho-
rized user, the decryption must be intractable although encryption is easy
for everyone. Figure 1.2 shows some tractable and intractable problems in
number theory. So, in this chapter, we shall study some efficient algorithms
for tractable number-theoretic problems, such as

(1) Euclid’s algorithm for
– computing the greatest common divisor of two integers a and b,

gcd(a, b),
– solving the linear congruence

ax ≡ 1 (mod N), or ax ≡ b (mod N),

– solving the linear Diophantine equation

ax + by = c.

(2) Continued fraction algorithm for representing a rational number a/b into
its continued fraction expansion,

a/b = q0 +
1

q1 +
1

q2 +
1

. . . qn−1 +
1
qn

.

1.1 Introduction 3

Numther-Theoretic Problems/Computation

Modular Arithmetic

Modular Exponentiation

Sieve of Eratosthenes

Euclid’s algorihm

Chinese Remainder Theorem

Primality Testing

· · · · · · · · · · · ·

Integer Factorization

Discrete Logarithms

Elliptic Curve Discrete Logarithms

Modular Square Root

Quadratic Residuosity

Shortest Vector

Intractable Problems/ComputationTractable Problems/Computation

Figure 1.2. Taxonomy of Problems in Number Theory

(3) Chinese Remainder Theorem for solving the system of congruences,

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),

· · · · · ·
· · · · · ·

x ≡ an (mod mn).

(4) Repeated squaring algorithm for fast modular exponentiation,

y ≡ yk (mod N).

(5) Repeated doubling algorithm for fast group operations on elliptic curves,

Q ≡ kP (mod N),

where P and Q are points on the elliptic curve E : y2 = x3 + ax + b over
ZN .

4 1. Computational/Mathematical Preliminaries

(6) Efficient algorithms for primality testing of integer N .

These efficient algorithms play a significant role in public-key cryptographic
systems. We shall also study some intractable or infeasible number-theoretic
problems, such as:

(1) Integer Factorization Problem (IFP), or IFP problem for short, for RSA
cryptography [262].

(2) Discrete Logarithm Problem (DLP), or DLP problem for short, for Diffie-
Hellman-Merkle key-exchange [101] and ElGamal cryptography [106].

(3) Elliptic Curve Discrete Logarithm Problem (ECDLP), or ECDLP prob-
lem for short, for elliptic curve cryptography ([213] and [170]).

(4) Modular Root Finding Problem (MRFP), or MRFP problem for short,
for Rabin cryptography [252].

(5) Quadratic Residuosity Problem (QRP), or QRP problem for short, for
Goldwasser-Micali probabilistic encryption [124].

These intractable/infeasible number-theoretic problems form the basis of the
security of many public-key cryptographic systems. But before discussing
tractable and intractable number-theoretic computation, we shall first in-
troduce some basic concepts and results in computability, complexity and
intractability based on Turing machines.

1.2 Computability, Complexity and Intractability

Turing Machines

The theory of Turing machines was first proposed and studied by the great
English logician and mathematician Alan Turing in his seminal paper [316]
published in 1936 (see Figure 1.3 for the first page the paper):

1.2 Computability, Complexity and Intractability 5

Figure 1.3. The First Page of Turing’s 1936 Paper

First of all we present a formal definition of Turing machines.

Definition 1.2.1. A standard multitape Turing machine, M (see Figure
1.4), is an algebraic system defined by

M = (Q,Σ, Γ, δ, q0,2, F) (1.1)

where

(1) Q is a finite set of internal states;
(2) Σ is a finite set of symbols called the input alphabet. We assume that

Σ ⊆ Γ − {2};

6 1. Computational/Mathematical Preliminaries

............

Control Unit

Finite State

......

Read-Write Heads

Tape k

Tape 2

Tape 1

......

............

..
..

..

Figure 1.4. A k-tape (k ≥ 1) Turing Machine

(3) Γ is a finite set of symbols called the tape alphabet;
(4) δ is the transition function, which is defined by

(i) if M is a deterministic Turing machine (DTM), then

δ : Q× Γ k → Q× Γ k × {L,R}k (1.2)

(ii) if M is a nondeterministic Turing machine (NDTM), then

δ : Q× Γ k → 2Q×Γ k×{L,R}k

(1.3)

where L and R specify the movement of the read-write head left or
right. When k = 1, it is just a standard one-tape Turing machine;

(5) 2 ∈ Γ is a special symbol called the blank;
(6) q0 ∈ Q is the initial state;
(7) F ⊆ Q is the set of final states.

Thus, Turing machines provide us with the simplest possible abstract
model of computation for modern digital (even quantum) computers.

Example 1.2.1. Given two positive integers x and y design a Turing ma-
chine that computes x + y.

First, we have to choose some convention for representing positive inte-
gers. For simplicity, we will use unary notation in which any positive integer

1.2 Computability, Complexity and Intractability 7

x is represented by w(x) ∈ {1}+, such that |w(x)| = x. Thus in this nota-
tion, 4 will be represented by 1111. We must also decide how x and y are
placed on the tape initially and how their sum is to appear at the end of
the computation. It is assumed that w(x) and w(y) are on the tape in unary
notation, separated by a single 0, with the read-write head on the leftmost
symbol of w(x). After the computation, w(x+y) will be on the tape followed
by a single 0, and the read-write head will be positioned at the left end of
the result. We therefore want to design a Turing machine for performing the
computation

q0w(x)0w(y)
∗
` qfw(x + y)0,

where qf ∈ F is a final state. Constructing a program for this is relatively
simple. All we need to do is to move the separating 0 to the right end of w(y),
so that the addition amounts to nothing more than the coalition of the two
strings. To achieve this, we construct

M = (Q,Σ, Γ, δ, q0,2, F),

with
Q = {q0, q1, q2, q3, q4},

F = {q4},
δ(q0, 1) = (q0, 1, R),

δ(q0, 0) = (q1, 1, R),

δ(q1, 1) = (q1, 1, R),

δ(q1,2) = (q2,2, L),

δ(q2, 1) = (q3, 0, L),

δ(q3, 1) = (q3, 1, L),

Note that in moving the 0 right we temporarily create an extra 1, a fact
that is remembered by putting the machine into state q1. The transition
δ(q2, 1) = (q3, 0, R) is needed to remove this at the end of the computation.
This can be seen from the sequence of instantaneous descriptions for adding
111 to 11:

8 1. Computational/Mathematical Preliminaries

q01110011 ` 1q0110011
` 11q01011
` 111q0011
` 1111q111
` 11111q11
` 111111q1

` 11111q21
` 1111q310
∗
` q32111110
` q4111110.

Definition 1.2.2. A function is effectively computable or uncomputable if it
can or cannot be computed by a Turing machine. A problem is solvable or
unsolvable if it can or cannot be solved by a Turing machine. A langauge
is acceptable or unacceptable if it can or cannot be accepted by a Turing
machine.

The Church-Turing Thesis

Any effectively computable function can be computed by a Turing machine,
and there is no effective procedure that a Turing machine cannot perform.
This leads naturally to the following famous Church-Turing thesis, named
after Alonzo Church (1903–1995) and Alan Turing (1912–1954):

The Church-Turing thesis: Any effectively computable function
can be computed by a Turing machine.

The Church-Turing thesis thus provides us with a powerful tool to dis-
tinguish what is computation and what is not computation, what function is
computable and what function is not computable, and more generally, what
computers can do and what computers cannot do.

It must be noted that the Church-Turing thesis is not a mathematical
theorem, and hence it cannot be proved formally, since, to prove the Church-
Turing thesis, we need to formalize what is effectively computable, which is
impossible. However, many computational evidences support the thesis and
in fact no counterexample has been found yet.

From a computer science and particularly a cryptographic point of view,
we are not just interested in what computers can do, but in what computers
can do efficiently. That is, in cryptography we are more interested in practical
computable rather than just theoretical computable; this leads to the Cook-
Karp Thesis.

1.2 Computability, Complexity and Intractability 9

Remark 1.2.1. Church in his famous 1936 paper [69] (see the first page
of his paper in Figure 1.5) proposed the important concept of λ-definable
and later in his book review [70] of Turing’s 1936 paper, he said that all
effective procedures are in fact Turing equivalent. This is what we call now
the Church-Turing Thesis.

Figure 1.5. The First Page of Church’s 1935 Paper

Complexity Classes

We are now in a position to present a formal definition of some common
complexity classes based computations on Turing machines. First, we need a
definition for probabilistic or randomized Turing machines.

10 1. Computational/Mathematical Preliminaries

Definition 1.2.3. A probabilistic Turing machine is a type of nondetermin-
istic Turing machine with distinct states called coin-tossing states. For each
coin-tossing state, the finite control unit specifies two possible legal next
states. The computation of a probabilistic Turing machine is deterministic
except that in coin-tossing states the machine tosses an unbiased coin to
decide between the two possible legal next states.

A probabilistic Turing machine can be viewed as a randomized Turing
machine [145], as described in Figure 1.6. The first tape, holding input, is

Control

Random Tape

Scratch Tape(s)

Input

· · · 0011101010010101000100011110 · · ·
(Random bits)

(As Conventional TM)
Input Tape

Finite

Figure 1.6. A k-tape (k ≥ 1) Turing Machine

just the same as conventional multitape Turing machine. The second tape is
referred to as random tape, containing randomly and independently chosen
bits, with probability 1/2 of a 0 and the same probability 1/2 of a 1. The
third and subsequent tapes are used, if needed, as scratch tapes by the Turing
machine.

Definition 1.2.4. P is the class of problems solvable in polynomial-time by
a deterministic Turing machine (DTM). Problems in this class are classified
to be tractable (feasible) and easy to solve on a computer. For example,
additions of any two integers, no matter how big they are, can be performed
in polynomial-time, and hence it is in P.

Definition 1.2.5. NP is the class of problems solvable in polynomial-time
on a nondeterministic Turing machine (NDTM). Problems in this class are

1.2 Computability, Complexity and Intractability 11

classified to be intractable (infeasible) and hard to solve on a computer. For
example, the Traveling Salesman Problem (TSP) is in NP, and hence it is
hard to solve.

In terms of formal languages, we may also say that P is the class of
languages where the membership in the class can be decided in polynomial-
time, whereas NP is the class of languages where the membership in the
class can be verified in polynomial-time [304]. It seems that the power of
polynomial-time verifiable is greater than that of polynomial-time decidable,
but no proof has been given to support this statement (see Figure 1.7). The
question of whether or not P = NP is one of the greatest unsolved problems
in computer science and mathematics, and in fact it is one of the seven
Millennium Prize Problems proposed by the Clay Mathematics Institute in
Boston in 2000, each with one-million US dollars [73].

Easy

P

?

NP

?

NPC

Very Hard

Hard

Figure 1.7. The P Versus NP Problem

Definition 1.2.6. EXP is the class of problems solvable by a deterministic
Turing machine (DTM) in time bounded by 2ni

.

Definition 1.2.7. A function f is polynomial-time computable if for any
input w, f(w) will halt on a Turing machine in polynomial-time. A language
A is polynomial-time reducible to a langauge B, denoted by A ≤P B, if there
exists a polynomial-time computable function such that for every input w,

w ∈ A ⇐⇒ f(w) ∈ B.

12 1. Computational/Mathematical Preliminaries

The function f is called the polynomial-time reduction of A to B.

Definition 1.2.8. A language/problem L is NP-Completeness if it satisfies
the following two conditions:

(1) L ∈ NP,

(2) ∀A ∈ NP, A ≤P L.

Definition 1.2.9. A problem D is NP-hard if it satisfies the following con-
dition:

∀A ∈ NP, A ≤P D

where D may be in NP, or may not be in NP. Thus, NP-hard means at
least as hard as any NP-problem, although it might, in fact, be harder.

Similarly, one can define the class of problems of P-Space, P-Space Com-
plete, and P-Space Hard. We shall use NPC to denote the set of NP-
Complete problems, PSC the set of P-Space Complete problems, NPH the
set of NP-hard problems, and PSH the set of P-Space Hard problems. The
relationships among the classes P, NP, NPC, PSC, NPH, PSH, and EXP
may be described in Figure 1.8.

Definition 1.2.10. RP is the class of problems solvable in expected
polynomial-time with one-sided error by a probabilistic (randomized) Turing
machine (PTM). By “one-sided error” we mean that the machine will answer
“yes” when the answer is “yes” with a probability of error < 1/2, and will
answer “no” when the answer is “no” with zero probability of error.

Definition 1.2.11. ZPP is the class of problems solvable in expected poly-
nomial time with zero error on a probabilistic Turing machine (PTM). It is de-
fined by ZPP = RP ∩ co-RP, where co-RP is the complement ofRP. where
co-RP is the complementary language of RP. i.e., co-RP = {L : L ∈ RP}).
By “zero error” we mean that the machine will answer “yes” when the an-
swer is “yes” (with zero probability of error), and will answer “no” when
the answer is “no” (also with zero probability of error). But note that the
machine may also answer “?”, which means that the machine does not know
the answer is “yes” or “no”. However, it is guaranteed that at most half of
simulation cases the machine will answer “?”. ZPP is usually referred to an
elite class, because it also equals to the class of problems that can be solved
by randomized algorithms that always give the correct answer and run in
expected polynomial time.

Definition 1.2.12. BPP is the class of problems solvable in expected
polynomial-time with two sided error on a probabilistic Turing machine
(PTM), in which the answer always has probability at least 1

2 + δ, for some
fixed δ > 0 of being correct. The “B” in BPP stands for “bounded away the
error probability from 1

2”; for example, the error probability could be 1
3 .

1.2 Computability, Complexity and Intractability 13

P

NP

PS

EXP

NPC

PSCNPH

PSH

Figure 1.8. Conjectured Relationships Among Classes P, NP and NPC, etc.

The space complexity classes P-SPACE and NP-SPACE can be defined
analogously as P and NP. It is clear that a time class is included in the
corresponding space class since one unit is needed to the space by one square.
Although it is not known whether or not P = NP, it is known that P-SPACE
= NP-SPACE. It is generally believed that

P ⊆ ZPP ⊆ RP ⊆
(BPP

NP
)
⊆ P-SPACE ⊆ EXP.

Besides the proper inclusion P ⊂ EXP, it is not known whether any of the
other inclusions in the above hierarchy is proper. Note that the relationship
of BPP and NP is not known, although it is believed that NP 6⊆ BPP.
Figure 1.9 shows the relationships among the various common complexity
classes.

14 1. Computational/Mathematical Preliminaries

ZPP

RP

NP

BPP

co-NP

co-RP

P

Figure 1.9. Conjectured Relationships Among Some Common Complexity Classes

The Cook-Karp Thesis

It is widely believed, although no proof has been given, that problems in
P are computationally tractable, whereas problems not in (beyond) P are
computationally intractable. (see Figure 1.15 for more information). This is
the famous Cook-Karp thesis, named after Stephen Cook (Figure 1.10 shows
the first page of Cook’s paper) and Richard Karp (Figure 1.11 shows the first
page of Karp’s paper):

The Cook-Karp thesis. Any computationally tractable problem
can be computed by a Turing machine in deterministic polynomial-
time.

Thus, problems in P are tractable whereas problems in NP are in-
tractable. However, there is not a clear cut between the two types of problems.
This is exactly the P Versus NP, mentioned earlier.

Compared to the Church-Turing Thesis, the Cook-Karp Thesis provides a
step closer to practical computability and complexity, and hence the life after
Cook and Karp is much easier, since there is no need to go all the way back to

1.3 Efficient Number-Theoretic Algorithms 15

Figure 1.10. The First Page of Cook’s Paper

Church and Turing. Again, Cook-Karp Thesis is not a mathematical theorem
and hence cannot be proved mathematically, however evidences support the
thesis.

1.3 Efficient Number-Theoretic Algorithms

In this section, we study some well-known and widely used efficient number-
theoretic algorithms, including Euclid’s algorithm, continued fraction algo-

16 1. Computational/Mathematical Preliminaries

Figure 1.11. The First Page of Karp’s Paper

rithm, modular exponentiations, the Chinese Remainder Theorem, point ad-
ditions of elliptic curves, and primality testing algorithms.

Euclid’s Algorithm

Our first and also the most important efficient algorithm in number the-
ory and cryptography is Euclid’s algorithm for computing gcd(a, b), and its
extension for solving the linear congruence

ax ≡ 1 (mod n)

or

1.3 Efficient Number-Theoretic Algorithms 17

ax ≡ b (mod n)

and the linear Diophantine equation

ax− by = c.

First notice that ax ≡ 1 (mod n) is a special case of ax ≡ b (mod n). Notice
again that ax ≡ b (mod n) is equivalent to ax− by = c, since, e.g.,

ax ≡ b (mod n) =⇒ ax− ny = b.

Thus, it suffices to only consider the solution to ax + by = c.

Theorem 1.3.1. Let a, b, c be integers with not both a and b equal to 0, and
let d = gcd(a, b). If d - c, then the linear Diophantine equation

ax + by = c (1.4)

has no integer solution. The equation has an integer solution in x and y if
and only if d | c. Moreover, if (x0, y0) is an integer solution of the equation,
then the general solution of the equation is

(x, y) =
(

x0 +
b

d
· t, y0 − a

d
· t

)
(1.5)

where t ∈ Z is an integer parameter.

Proof. Assume that x and y are integers such that ax + by = c. Since d | a
and d | b, d | c. Hence, if d - c, there is no integer solutions of the equation.

Now suppose d | c. There is an integer k such that c = kd. Since d is a
sum of multiples of a and b, we may write

am + bn = d.

Multiplying this equation by k, we get

a(mk) + b(nk) = dk = c

so that x = mk and y = nk is a solution.
For the “only if” part, suppose x0 and y0 is a solution of the equation.

Then
ax0 + by0 = c.

Since d | a and d | b, then d | c. 2

Theorem 1.3.2 (Division Theorem). For any integer a and any positive
integer b, there exist unique integers q and r such that

a = bq + r, 0 ≤ r < b, (1.6)

where a is called the dividend, q the quotient, and r the remainder. If b - a,
then r satisfies the stronger inequalities 0 < r < a.

18 1. Computational/Mathematical Preliminaries

Proof. Consider the arithmetic progression

· · · ,−3b,−2b,−b, 0, b, 2b, 3b, · · ·
then there must be an integer q such that

qb ≤ a ≤ (q + 1)b.

Let a− qb = r, then a = bq + r with 0 ≤ r < b. To prove the uniqueness of q
and r, suppose there is another pair q1 and r1 satisfying the same condition
in (1.6), then

a = bq1 + r1, 0 ≤ r1 < b.

We first show that r1 = r. For if not, we may presume that r < r1, so that
0 < r1 − r < b, and then we see that b(q − q1) = r1 − r, and so b | (r1 − r),
which is impossible. Hence, r = r1, and also q = q1. 2

Definition 1.3.1. Let a and b be integers with a 6= 0. We say a divides b,
denoted by a | b, if there exists an integer c such that b = ac. When a divides
b, we say that a is a divisor (or factor) of b, and b is a multiple of a. If a
does not divide b, we write a - b. If a | b and 0 < a < b, then a is called a
proper divisor of b. The largest divisor d such that d | a and d | b is called the
greatest common divisor (gcd) of a and b. The greatest common divisor of a
and b is denoted by gcd(a, b).

Theorem 1.3.3. Let a, b, q, r be integers with b > 0 and 0 ≤ r < b such that
a = bq + r. Then gcd(a, b) = gcd(b, r).

Proof. Let X = gcd(a, b) and Y = gcd(b, r), it suffices to show that X = Y .
If integer c is a divisor of a and b, it follows from the equation a = bq + r and
the divisibility properties that c is a divisor of r also. By the same argument,
every common divisor of b and r is a divisor of a. 2

Euclid’s algorithm is a process by repeatedly applying the division theo-
rem to the pair of integers (a, b), for finding gcd(a, b).

Definition 1.3.2 (Euclid’s algorithm). Let a and b be positive integers.
Then the following system of equations for r1, r2, · · · , rn defines Euclid’s al-
gorithm.

a = bq0 + r1 ⇐⇒ r1 = a− bq0

b = r1q1 + r2 ⇐⇒ r2 = b− r1q1

r1 = r2q2 + r3 ⇐⇒ r3 = r1 − r2q2

r2 = r3q3 + r4 ⇐⇒ r4 = r2 − r3q3

...
...

...

rn−2 = rn−1qn−1 + rn ⇐⇒ rn = rn−2 − rn−1qn−1

rn−1 = rnqn + 0

(1.7)

1.3 Efficient Number-Theoretic Algorithms 19

This process ends when a remainder of 0 is obtained. This must occur after
a finite number of steps; that is, rn+1 = 0 for some n.

Theorem 1.3.4 (Correctness of Euclid’s algorithm). The last nonzero
remainder, rn, in (1.7), is the greatest common divisor of a and b. That is,

rn = gcd(a, b). (1.8)

Moreover, values of x and y in

gcd(a, b) = ax + by (1.9)

can be obtained by writing each ri as a linear combination of a and b. (k is
a linear combination of a and b if k = ax + by.)

Proof. Let d = gcd(a, b). The using the repeated equations in the algorithm,
we have:

d | a ⇒ d | b ⇒ d | r1 ⇒ d | r2 ⇒ · · · ⇒ d | rn

so that d ≤ rn. Working backwards, we have:

rn | rn−1 ⇒ rn | rn−2 ⇒ rn | rn−3 ⇒ · · · ⇒ rn | a ⇒ rn | b.
Hence, rn | a and rn | b. Since d is the greatest common divisors of a and b, it
follows that rn ≤ d. Therefore, rn = d. To see that rn is a linear combination
of a and b, we argue by induction that each ri is a linear combination of
a and b. Clearly, r1 is a linear combination of a and b, since r1 = a − bq0,
so does r2. In general, ri is a linear combination of ri−1 and ri−2. By the
inductive hypothesis we may suppose that these latter two numbers are linear
combinations of a and b, and it follows that ri is also a linear combination of
a and b. 2

Example 1.3.1. The process of Euclid’s algorithm for computing
gcd(1281, 243) may be described as follows.

1281 = 243 · 5 + 66

243 = 66 · 3 + 45

66 = 45 · 1 + 21

45 = 21 · 2 + 3

21 = 3 · 7 + 0

Thus, gcd(1281, 243) = 3. The process may also be alternatively described as
follows.

gcd(1281, 243) = gcd(243, 66) (because 1281 = 243 · 5 + 66)

= gcd(66, 45) (because 243 = 66 · 3 + 45)

= gcd(45, 21) (because 66 = 45 · 1 + 21)

= gcd(21, 3) (because 45 = 21 · 2 + 3)

= 3 (because 21 = 3 · 7 + 0).

20 1. Computational/Mathematical Preliminaries

Algorithm 1.3.1 (Euclid’s algorithm). Given integers a and b with a >
b > 0, this algorithm will compute gcd(a, b).

[1] (Initialization) Set

r−1 ← a
r0 ← b,
i = 0.

[2] (Decision) If ri = 0, go to Step [4].
[3] (Main Computation) Set

qi ← bri−1/ric,
ri+1 ← ri−1 − qi · ri,
i ← i + 1,
go to Step [2].

[4] (Exit) Output ri−1.

Example 1.3.2. Let a = 1281 and b = 243. We tabulate the computing
results by executing Algorithm 1.3.1.

qi−1 ri−1

5 243
3 66
1 45
2 21
7 3

↑
d

Theorem 1.3.5 (Complexity of Euclid’s algorithm). Euclid’s algorithm
is in P. More specifically, Eucld’s algorithm can be performed in O((log2 a)3)
bit operations.

Proof. First of all, if Fn+1 and Fn+2 are the successive terms of the Fibonacci
sequence with n > 1, then the Euclid’s algorithm takes exactly n divisions in
(1.16) to show gcd(Fn+2, Fn+1) = F2 = 1, since

Fn+2 = Fn+1 · 1 + Fn,

Fn+1 = Fn · 1 + Fn−1,

...

F4 = F3 · 1 + F2,

F3 = F2 · 2 + 0.

Next, we shall show that the number of divisions needed to find gcd(a, b)
with a > b > 0 by Euclid’s algorithm is no more than five times the number

1.3 Efficient Number-Theoretic Algorithms 21

of digits of b. By replacing r0 with a and r1 with b so that every equation in
(1.16) has the form

rj = rj+1qj+1 + rj+2

except the last one which is of the form

rn−1 = rnqn.

Note that each of the quotient q1, q2, · · · , qn−1 ≥ 1 and qn ≥ 2. Therefore

rn ≥ 1 = F2

rn−1 ≥ 2rn ≥ 2F2 ≥ 2 = F3

rn−2 ≥ rn−1 + rn ≥ F3 + F2 = F4

rn−3 ≥ rn−2 + rn−1 ≥ F4 + F3 = F5

...
r2 ≥ r3 + r4 ≥ Fn−1 + Fn−2 = Fn

b = r1 ≥ r2 + r3 ≥ Fn + Fn−1 = Fn+1.

Since for all n ≥ 0,

Fn =
αn − βn

√
5

where

α =
1 +

√
5

2
, β =

1−√5
2

then
Fn > αn−2.

Thus
b > αn−2.

Now log10 b ≈ 0.208 > 1
5 , so that

log10 b > (n− 1) log10 α >
n− 1

5
.

That is,
n− 1 < 5 log10 b.

Let b have k digits so that b < 10k and log10 b < k. Hence n − 1 < 5k.
Because k is integer, so n ≤ 5k. This means that one needs O(log2 a) di-
visions in Euclid’s algorithm to compute gcd(a, b). As for each division, one
needs O((log2 a)2) bit operations, thus the total bit operations for computing
gcd(a, b) isO((log2 a)3). Therefore, computing gcd(a, b) by Euclid’s algorithm
is in P. 2

22 1. Computational/Mathematical Preliminaries

Euclid’s algorithm is found in Book VII, Propositions 1 and 2 of his El-
ements, but it probably wasn’t his own invention. Scholars believe that the
method was known up to 200 years earlier. However, it first appeared in Eu-
clid’s Elements, and more importantly, it is the first nontrivial algorithm that
has survived to this day. As Hardy remarked in his Apology [137]: Euclid’s
proof of the infinitude of prime numbers and Pythagoras’s proof of the irra-
tionality of

√
2 are as as fresh and significant as when it has discovered – two

thousand years have not written a wrinkle on either of them, we could say
the same thing for Euclid’d algorithm, as it is indeed as fresh and important
as when it has discovered.

It is interesting to note that in almost the same time as Euclid, the an-
cient Chinese mathematicians also independently discovered an algorithm for
computing gcd, called Mutual Subtraction Algorithm in Problem 6 of Chapter
1 of the ancient mathematics text The Nine Chapters on the Mathematical
Art (see [169] and [286]):

If halving is possible, take half.
Otherwise write down the denominator and the numerator,
and subtract the smaller from the greater.
Repeat until both numbers are equal.
Simplify with this common factor.

With this regard, we could call Euclid’s algorithm Mutual Division Algo-
rithm. To see how similar they are, let us use both methods to compute
gcd(195, 135).

195 = 135 · 1 + 60 195− 135 = 60
135 = 60 · 2 + 15 135− 60 = 75
60 = 15 · 4 + 0 75− 60 = 15

60− 15 = 45
45− 15 = 30
30− 15 = 15

One may conclude from the above example that Euclid’s mutual division al-
gorithm is faster than the Chinese mutual subtraction algorithm. One could
also conclude that Euclid’s mutual division algorithm is an improvement of
the Chinese mutual subtraction algorithm. However, the Chinese mutual sub-
traction algorithm still has its merits and advantages, which Euclid’s mutual
division algorithm does not have or is difficult to have; two of the advantages
are as follows. Firstly, the Chinese algorithm is easy to use when finding gcd
of more than two numbers. This can be shown by the calculation

gcd(1008, 1260, 882, 1134) = gcd(1008− 882, 1260− 1143, 882, 1134− 882)
= gcd(126, 126, 882− 126 · 6, 292− 126)
= gcd(126, 126, 126, 126)
= 126

1.3 Efficient Number-Theoretic Algorithms 23

Secondly and more importantly, the Chinese algorithm can be converted,
without any extra afford and labor, to an even more efficient algorithm than
Euclid’s, now commonly known as binary Euclid’s algorithm [49]:

Algorithm 1.3.2 (Binary GCD). Given integers a and b with a > b > 0,
this algorithm will compute gcd(a, b) without using divisions and multiplications,
except by powers of 2.

[1] Set t ← |a− b|. If t = 0, go to Step [4].

[2] While a is even do a ← a/2.

[3] If a ≥ b then a ← t else b ← t, go to Step [1].

[4] Output a (this a is the required gcd(a, b)), and terminate the algorithm.

Remark 1.3.1. As observed by Knuth [169] and Brent [49], or as can be seen
from the above discussion, binary Euclid’s algorithm is essentially the Chinese
Mutual Subtraction Algorithm, which is different from Euclid’s algorithm, as
Euclid’s algorithm does not have the binary feature. This is the difference
between the ancient west and east algorithms for computing GCD. Readers
who are interested in binary GCD algorithm, particularly in the rigorous
complexity analysis of the binary GCD algorithm, are advised to consult the
excellent paper by Brent [49].

Extended Euclid’s Algorithm

Euclid’s algorithm can not only be used to compute

d = gcd(a, b),

but also be used to solve the linear Diophantine equation of the form

d = ax + by,

or the linear congruence of the form

ax ≡ b (mod N).

First let us define the extended Euclid’s algorithm.

Definition 1.3.3 (Extended Euclid’s algorithm). Let a and b be posi-
tive integers with a ≥ b > 0. Then the following system of equations for
r1, r2, · · · , rn defines extended Euclid’s algorithm.

24 1. Computational/Mathematical Preliminaries

r1 = a− bq0 ⇐⇒ r1 = a− bq0

= ax1 − by1

r2 = b− r1q1 ⇐⇒ r2 = b− r1q1

= b− (a− bq0)q1

= −aq1 + (1 + q0q1)b

= ax2 + by2

r3 = r1 − r2q2 ⇐⇒ r3 = r1 − r2q2

= ax3 + by3

r4 = r2 − r3q3 ⇐⇒ r4 = r2 − r3q3

= ax4 + by4

...
...

...

rn = rn−2 − rn−1qn−1 ⇐⇒ rn = rn−2 − rn−1qn−1

= axn + byn

(1.10)

Thus, the extended Euclid’s algorithm takes input a and b and outputs rn,
xn and yn such that

rn = gcd(a, b) = axn + byn.

Example 1.3.3. Find x and y in gcd(1281, 243) = 1281x+243y. We perform
the computation for gcd(a, b) at the left-hand side and in the same time, the
calculation for (x, y) at the right-hand side as follows.

1281 = 243 · 5 + 66 ⇐⇒ 66 = 1281− 243 · 5
243 = 66 · 3 + 45 ⇐⇒ 45 = 243− 66 · 3

= 243− 3(1281− 243 · 5)
= 16 · 243− 3 · 1281

66 = 45 · 1 + 21 ⇐⇒ 21 = 66− 45 · 1
= 1281− 243 · 5− 16 · 243 + 3 · 1281
= 4 · 1281− 21 · 243

45 = 21 · 2 + 3 ⇐⇒ 3 = 45− 21 · 2
= 16 · 243− 3 · 1281− 2(4 · 1281− 21 · 243)
= −11 · 1281 + 58 · 243

↑ ↑ ↑ ↑
x a y b

21 = 3 · 7 + 0

The above process is well suited for computer programming, but of course,
if the calculation of (x, y) are by hand, the following (bottom-up) process is
convenient.

1.3 Efficient Number-Theoretic Algorithms 25

3 = 45− 21 · 2
= 45− (66− 45 · 1) · 2
= 3 · 45− 2 · 66
= 3 · (243− 66 · 3)− 2 · 66
= 3 · 243− 11 · 66
= 3 · 243− 11 · (1281− 243 · 5)
= −11 · 1281 + 58 · 243

↑ ↑ ↑ ↑
x a y b

Algorithm 1.3.3 (Extended Euclid’s algorithm). Let a > b be two pos-
itive integers, this algorithm finds d = gcd(a, b) and in the same time, finds x, y
in d = ax + by.

[1] (Initialization) Let

r0 ← a r1 ← b,
x0 ← 1 y0 ← 0,
x1 ← 0 y1 ← 1,
i ← 1.

[2] (Decision) If ri mod ri−1 6= 0, go to step [4].

[3] (Main Computation) Set

qi ← bri−1/ric,
ri+1 ← ri−1 − qi · ri

xi+1 ← xi−1 − qi · xi

yi+1 ← yi−1 − qi · yi

i ← i + 1

[4] (Exit) Output (q, x, y, d) = (qi−1, xi−1, yi−1, ri−1).

Example 1.3.4. Let a = 1281 and b = 243. We tabulate the computing
results of (q, d, x, y) at each loop i of the above algorithm 1.3.3:

q ri xi yi

5 243 0 1
3 66 1 -5
1 45 -3 16
2 21 4 -21
7 3 -11 58

↑ ↑ ↑
d x y

That is,
gcd(a, b) = ax + by ←→ 3 = 1281(−11) + 243 · 58.

26 1. Computational/Mathematical Preliminaries

The following example shows how to use extended Euclid’s algorithm to
solve the linear congruence of the form ax ≡ b (mod N).

Example 1.3.5. Find the x in 5033464705x ≡ 1 (mod 12347). First notice
that

5033464705x ≡ 1 (mod 12347) ⇐⇒ 5033464705x− 12347y = 1.

Of course here we are only interested in the value of x, not y. We tabulate
the results of each computation step in Algorithm 1.3.3 as follows.

q x1 y1 r1

- 1 0 5033464705
407667 0 1 12347

48 1 -407667 256
4 -48 19568017 59
2 193 -78679735 20
1 -434 176927487 19
19 627 -255607222 1

↑ ↑
x d

Thus, x = 627 is a solution to the congruence equation 5033464705x ≡
1 (mod 12345). This can be verified quickly to be true, since 5033464705 ·
627 ≡ 1 (mod 12345).

How about if gcd(a,N) > 1 when solving ax ≡ b (mod N)? For example,
find the x in 5033464705x ≡ 7 (mod 12345), where gcd(5033464705, 12345) =
5 > 1. There are two cases:

(1) If d - b, then there is no solution to the congruence.
(2) If d | b, then we need to consider whether or not there is a solution to

the new congruence (a/d)x ≡ b/d (mod N/d).

Thus, for 5033464705x ≡ 7 (mod 12345), since gcd(5033464705, 12345) = 5,
we get a new congruence (5033464705/5)x ≡ 7/5 (mod 12345/5), which is
164x ≡ 989 (mod 2469).

Theorem 1.3.6. Let d = gcd(a,N).

(1) If d - b, then the linear congruence

ax ≡ b (mod N) (1.11)

has no solution.
(2) The linear congruence ax ≡ b (mod N) has solutions if and only if d | b.
(3) The linear congruence ax ≡ b (mod N) has exactly one solution if

gcd(a,N) = 1.

1.3 Efficient Number-Theoretic Algorithms 27

(4) If d | b, then the linear congruence ax ≡ b (mod N) has exactly d
solutions modulo N . These are given by

t, t +
N

d
, t +

2N

d
, · · · , t +

(d− 1)N
d

(1.12)

where t is the solution, unique modulo N/d, of the linear congruence

a

d
x ≡ b

d

(
mod

N

d

)
. (1.13)

Example 1.3.6. Solve 803x ≡ 22 (mod 154). Notice first that

803x ≡ 22 (mod 154) ⇐⇒ 803x− 154y = 22.

Use the extended Euclid’s algorithm 1.3.3, we get:

q u1 u2 u3

- 1 0 803
5 0 1 154
4 1 -5 33
1 -4 21 22
2 5 -26 11

↑ ↑
x d

Since d | b, and d = 11 and x = 5, the congruence has exactly 11 solutions
x + iN/d for i = 0, 1, 2, · · · , d− 1, namely,

x = {5, 19, 33, 47, 61, 75, 89, 103, 117, 131, 145}.
Theorem 1.3.7. The complexity of extended Euclid’s algorithm is in P.

Continued Fraction Algorithm

Euclid’s algorithm is also intimately connected with the continued fraction
algorithm, and in fact, when performing the extended Euclid’s algorithm 1.3.3
on a, b, we get a sequence of numbers q0, q1, · · · , qn, which form a continued
fraction of a/b as follows:

a/b = q0 +
1

q1 +
1

q2 +
1

. . . qn−1 +
1
qn

(1.14)

Let us look at Example 1.3.6 again. If we only take the values of the q column,
ignoring all other values in other columns, we get:

28 1. Computational/Mathematical Preliminaries

803
154

= 5 +
1

4 +
1

1 +
1
2

(1.15)

Of course, if we are only interested in the values of q for the rational number
a/b, we can just use Algorithm 1.3.1 or Algorithm 1.3.3 to generate the
continued fraction for a/b. In what follows, we consider how to express a
general real number x, e.g.,

√
3, rather than just a rational number a/b, as a

continued fraction. Remarkably enough, the continued fraction algorithm for
real numbers is still the same as Euclid’s algorithm, except for notation.

Definition 1.3.4 (Continued fraction algorithm). Let x be a real num-
ber. Let q0 = bxc. Then the continued fraction algorithm is defined as follows.

x = q0 + ξ0, 0 < ξ0 < 1

1
ξ0

= x1 = q1 + ξ1, 0 < ξ1 < 1

1
ξ1

= x2 = q2 + ξ2, 0 < ξ2 < 1

1
ξ2

= x3 = q3 + ξ3, 0 < ξ3 < 1

...
...

(1.16)

The algorithm continues as long as ξn 6= 0. Whenever ξn = 0 for any positive
integer n, the algorithm terminates and

x = q0 +
1

q1 +
1

q2 +
1

. . . qn−1 +
1
qn

(1.17)

where q0, q1, · · · , qn−1, qn are taken directly from Euclid’s algorithm ex-
pressed in (1.16), and are called the partial quotients of the continued fraction,
or briefly as,

x = q0 +
1

q1+
1

q2+
· · · 1

qn−1+
1
qn

(1.18)

or even more briefly as

x = [q0, q1, q2, · · · qn−1, qn]. (1.19)

Just the same as qn are the partial quotients of the continued fraction of x,
the numbers xn are the complete quotients of the continued fraction of x. If
each qi is an integer, then the continued fraction is called simple; a simple
continued fraction can either be finite or infinite.

1.3 Efficient Number-Theoretic Algorithms 29

Theorem 1.3.8. Every rational number can be represented by a finite sim-
ple continued fraction in exactly two ways, one with an odd number of terms
and one with even number of terms. Every irrational number can be expressed
in exactly one way as an infinite simple continued fraction.

For example, let x = a/b be a rational number, then Euclid’s algorithm
for for computing gcd(a, b) will produce the continued fraction expansion of
a/b in the same time as follows:

a

b
= q0 +

1

q1 +
1

q2 +
1

. . . qn−1 +
1
qn

(1.20)

where q0, q1, · · · , qn−1, qn are taken directly from Euclid’s algorithm ex-
pressed in (1.16), or in (1.14).

The continued fraction algorithm defined in (1.16) can be conveniently
modified to be as follows:

q0 = bx0c, x1 =
1

x0 − q0

q1 = bx1c, x2 =
1

x1 − q1

...
...

qn = bxnc, xn+1 =
1

xn − qn

qn+1 = bxn+1c, xn+2 =
1

xn+1 − qn+1

...
...

(1.21)

which is, in turn, can be easily implemented as follows.

Algorithm 1.3.4 (Continued fraction algorithm). Given a real number
x, this algorithm will compute and output the partial quotients q0, q1, q2, · · · , qn

of the continued fraction x.

[1] (Initialization) Set

i ← 0,
xi ← x,
qi ← bxic,
print(qi).

[2] (Decision) If xi = qi go to Step [4].

30 1. Computational/Mathematical Preliminaries

[3] (Main Computation) Set

xi+1 ← 1
xi − qi

,

i ← i + 1,
qi ← bxic,
print(qi),
go to Step [2].

[4] Exit.

Example 1.3.7. Let x = 160523347/60728973. Then by applying Algorithm
1.3.4, we get 160523347/60728973 = [2, 1, 1, 1, 4, 12, 102, 1, 1, 2, 3, 2, 2, 36].
That is,

160523347
60728973

= 2 +
1

1 +
1

1 +
1

1 +
1

4 +
1

12 +
1

102 +
1

1 +
1

1 +
1

2 +
1

3 +
1

2 +
1

2 +
1
36

Theorem 1.3.9. The continued fraction algorithm is in P.

Definition 1.3.5. If each qi is an integer, the continued fraction is called
simple; a simple continued fraction can either be finite or infinite. A continued
fraction formed from [q0, q1, q2, · · · qn−1, qn] by neglecting all of the terms after
a given term is called a convergent of the original continued fraction. If we

denote the k-th convergent by Ck =
Pk

Qk
, then

(1)

C0 =
P0

Q0
=

q0

1
;

C1 =
P1

Q1
=

q0q1 + 1
q1

;

...

Ck =
Pk

Qk
=

qkPk−1 + Pk−2

qkQk−1 + Qk−2
, for k ≥ 2.

(2) If Pk = qkQk−1 +Qk−2 and Qk = qkPk−1 +Pk−2, then gcd(Pk, Qk) = 1.

1.3 Efficient Number-Theoretic Algorithms 31

(3) PkQk−1 − Pk−1Qk = (−1)k−1, for k ≥ 1.

If gcd(a, b) = d, then the convergent to a/b can be used to solve the linear
Diophantine equations ax + by = d.

Theorem 1.3.10. Let the convergents of the finite continued fraction of a/b
be as follows: [

P0

Q0
,
P1

Q1
, · · · ,

Pn−1

Qn−1
,
Pn

Qn

]
=

a

b
. (1.22)

Then the integer solution in x and y of the equation ax− by = d is

x = (−1)n−1Qn−1

y = (−1)n−1Pn−1

}
(1.23)

Corollary 1.3.1. The integer solution in x and y for equations ax+ by = d,
−ax− by = d and −ax + by = d are as follows:

x = (−1)n−1qn−1

y = (−1)npn−1

}
(1.24)

for ax + by = d.

x = (−1)nqn−1

y = (−1)n−1pn−1

}
(1.25)

for −ax− by = d.

x = (−1)nqn−1

y = (−1)npn−1

}
(1.26)

for −ax + by = d.

Remark 1.3.2. We have already seen how to use extended Euclid’s algo-
rithm to solve the linear Diophantine equations ax + by = d. The continued
fraction algorithm just discussed turns out to be equivalent to extended Eu-
clid’s algorithm, since the continued fraction of a/b is derived from Euclid’s
algorithm. They are all efficient and can be done in polynomial-time.

Example 1.3.8. Use the continued fraction method to solve the following
linear Diophantine equation:

364x− 227y = 1.

Since 364/227 can be expanded as a finite continued fraction with convergents
[
1, 2,

3
2
,

5
3
,

8
5
,

85
53

,
93
58

,
364
227

]

32 1. Computational/Mathematical Preliminaries

we have
x = (−1)n−1qn−1 = (−1)7−1 · 58 = 58,

y = (−1)n−1pn−1 = (−1)7−1 · 93 = 93.

That is,
364 · 58− 227 · 93 = 1.

Example 1.3.9. Use the continued fraction method to solve the following
linear Diophantine equation:

20719x + 13871y = 1.

Since 20719/13871 can be expanded as a finite simple continued fraction with
convergents

[
1,

3
2
,

118
79

,
829
555

,
947
634

,
1776
1189

,
2723
1823

,
4499
3012

,
20719
13871

]
,

we have
x = (−1)n−1qn−1 = (−1)8−1 · 3012 = −3012,

y = (−1)npn−1 = (−1)8 · 4499 = 4499.

That is,
20719 · (−3012) + 13871 · 4499 = 1.

The Chinese Remainder Theorem (CRT)

We now consider the solutions to systems of linear congruences. In around
200BC, the Chinese mathematician Sun Tsu proposed a problem in his classic
three-volume mathematics book Mathematical Manual: find a number that
leaves a remainder of 2 when divided by 3, a remainder of 3 when divided by
5, and a remainder of 2 when divided by 7. In modern algebraic language,
it is to find the smallest positive integer satisfying the following systems of
congruences:

x ≡ 2 (mod 3),
x ≡ 3 (mod 5),
x ≡ 2 (mod 7).

The general form of the problem is as follows.

Theorem 1.3.11 (The Chinese Remainder Theorem (CRT)). If m1,
m2, · · · , mn are pairwise relatively prime and greater than 1, and a1, a2, · · · ,
an are any integers, then there is a solution x to the following simultaneous
congruences:

1.3 Efficient Number-Theoretic Algorithms 33

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),

...
x ≡ an (mod mn).

(1.27)

If x and x′ are two solutions, then x ≡ x′ (mod M), where M = m1m2 · · ·mn.

Proof. Existence: Let us first solve a special case of the simultaneous con-
gruences (1.27), where i is some fixed subscript,

ai = 1, a1 = a2 = · · · = ai−1 = ai+1 = · · · = an = 0.

Let ki = m1m2 · · ·mi−1mi+1 · · ·mn. Then ki and mi are relatively prime,
so we can find integers r and s such that rki + smi = 1. This gives the
congruences:

rki ≡ 0 (mod ki),

rki ≡ 1 (mod mi).

Since m1,m2, · · · ,mi−1,mi+1, · · ·mn all divide ki, it follows that xi = rki

satisfies the simultaneous congruences:

xi ≡ 0 (mod m1),
xi ≡ 0 (mod m2),

...
xi ≡ 0 (mod mi−1),
xi ≡ 1 (mod mi),
xi ≡ 0 (mod mi+1),

...
xi ≡ 0 (mod mn).

For each subscript i, 1 ≤ i ≤ n, we find such an xi. Now, to solve the system
of the simultaneous congruences (1.27), set x = a1x1 + a2x2 + · · · + anxn.
Then x ≡ aixi ≡ ai (mod mi) for each i, 1 ≤ i ≤ n, therefore x is a solution
of the simultaneous congruences.

Uniqueness: Let x′ be another solution to the simultaneous congruences
(1.27), but different from the solution x, so that x′ ≡ x (mod mi) for each
xi. Then, x − x′ ≡ 0 (mod mi) for each i. So, mi divides x − x′ for each i;
hence the least common multiple of all the mj ’s divides x−x′. But since the
mi are pairwise relatively prime, this least common multiple is the product
M . So, x ≡ x′ (mod M). 2

34 1. Computational/Mathematical Preliminaries

Corollary 1.3.2. If the system of the linear simultaneous congruences (1.27)
is soluble, then its solution can be conveniently written as follows:

x ≡
n∑

i=1

aiMiM
′
i (mod m) (1.28)

where
m = m1m2 · · ·mn,
Mi = m/mi,
M ′

i = M−1
i (mod mi),

for i = 1, 2, · · · , n.

Theorem 1.3.12. Chinese Remainder Theorem is in P.

Example 1.3.10. Use the Chinese Remainder Theorem to solve

x ≡ 12 (mod 101),
x ≡ 93 (mod 235),
x ≡ 28 (mod 719).

As 101, 235, 719 are pairwise relatively prime, we use Equation (1.28) to find
the solution x:

x ≡
3∑

i=1

aiMiM
′
i (mod m)

≡ 12 ·M1 ·M ′
1 + 93 ·M2 ·M ′

2 + 28 ·M3 ·M ′
3 (mod M1M2M3)

≡ 12 · 168965 · 63 + 93 · 72619 · 59 + 28 · 23735 · 90 (mod 17065465)

= 5784383.

Fast Modular Exponentiation

The basic idea for fast exponentiation xe (mod N) is as follows: First, e is
written in its binary form e = (eβeβ−1 · · · e1e0)2, which is then stored in a
memory. Then, according to the binary bits eβ , eβ−1, · · · , e1, e0 (starting from
eβ to e0, i.e., from the most significant bit to the least significant bit), the
related operations are carried out. For example, let e = 100 = (1100100)2,
then the related squaring and multiplication operations will be carried out
as follows:

1.3 Efficient Number-Theoretic Algorithms 35

e6 1 x x
e5 1 x2 · x x3

e4 0 (x2 · x)2 x6

e3 0 ((x2 · x)2)2 x12

e2 1 (((x2 · x)2)2)2 · x x25

e1 0 ((((x2 · x)2)2)2 · x)2 x50

e0 0 (((((x2 · x)2)2)2 · x)2)2 x100

‖
x100

The general algorithm for computing y ≡ xe (mod N) may be given as
follows:

Algorithm 1.3.5 (Fast modular exponentiation for y ≡ xe (mod n)).
This algorithm will find the modular exponentiation

y ≡ xe (mod N)

where x, e, N ∈ N with N > 1.

[1] (Precomputation) Let
e = eβeβ−1 · · · e1e0 (1.29)

be the binary representation of e (i.e., e has β + 1 bits). For example, for
562 = (1000110010)2, we have β = 9 and

1 0 0 0 1 1 0 0 1 0
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
e9 e8 e7 e6 e5 e4 e3 e2 e1 e0

[2] (Initialization) Set y ← 1.

[3] (Squaring and Multiplication) Compute y ≡ xe (mod N) in the following
way:

for i from β down to 0 do
y ← y2 mod n (squaring)
if ei = 1 then

y ← y · x mod N (multiplication)

[4] (Exit) Print y and terminate the algorithm.

Theorem 1.3.13. Let x, e and N be positive integers with N > 1. Then
the modular exponentiation xe mod N can be computed in O(log e) arith-
metic operations and O (

(log e)(log N)2
)

bit operations. That is, modular
exponentiation is in P.

Proof. We first find the least positive residues of x, x2, x4, · · · , x2k

modulo n,
where 2k ≤ e < 2k+1, by successively squaring and reducing modulo n. This
requires a total ofO (

(log e)(log n)2
)

bit operations, since we performO(log e)

36 1. Computational/Mathematical Preliminaries

squarings modulo N , each requiring O((log N)2) bit operations. Next, we
multiply together the least positive residues of the integers x2i

corresponding
to the binary bits of e which are equal to 1, and reduce modulo n. This also
requires O (

(log e)(log N)2
)

bit operations, since there are at most O(log e)
multiplications, each requiring O((log n)2) bit operations. Therefore, a total
of O (

(log e)(log N)2
)

bit operations are needed to find the least positive
residue of xe mod N . 2

Fast Group Operations on Elliptic Curves

The idea of fast exponentiation xe (mod N) can be easily extended to the
group operation (point addition) Q ≡ kP (mod N) where P and Q are
points on elliptic curve E : y2 ≡ x3+ax+b (mod N). Suppose E is an elliptic
curve as shown in Figure 1.12. A straight line (non-vertical) L connecting
points P and Q intersects the elliptic curve E at a third point R, and the
point P ⊕ Q is the reflection of R in the X-axis. That is, if R = (x3, y3),
then P ⊕ Q = (x3,−y3) is the reflection of R in the X-axis. Note that a
vertical line, such as L′ or L′′, meets the curve at two points (not necessarily
distinct), and also at the point at infinity OE (we may think of the point at
infinity as lying far off in the direction of the Y -axis). The line at infinity
meets the curve at the point OE three times. Of course, the non-vertical line
meets the curve in three points in the XY plane. Thus, every line meets the
curve in three points.

The algebraic formula for computing P3(x3, y3) = P1(x1, y1) + P2(x2, y2)
on E is as follows:

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1),

where

λ =

3x2
1 + a

2y1
if P1 = P2

y2 − y1

x2 − x1
otherwise.

The idea for fast computing Q = kP over an elliptic curve E is similar to
that of computing y = xk over N. For example, to compute Q = 105P , we
first let

k = 105 = (1101001)2
and then perform the operations as follows starting from e6 to e0:

1: Q ← P + 2Q ⇒ Q ← P ⇒ Q = P
1: Q ← P + 2Q ⇒ c ← P + 2P ⇒ Q = 3P
0: Q ← 2Q ⇒ Q ← 2(P + 2P) ⇒ Q = 6P
1: Q ← P + 2Q ⇒ Q ← P + 2(2(P + 2P)) ⇒ Q = 13P
0: Q ← 2Q ⇒ Q ← 2(P + 2(2(P + 2P))) ⇒ Q = 26P
0: Q ← 2Q ⇒ Q ← 2(2(P + 2(2(P + 2P)))) ⇒ Q = 52P
1: Q ← P + 2Q ⇒ Q ← P + 2(2(2(P + 2(2(P + 2P))))) ⇒ Q = 105P .

1.3 Efficient Number-Theoretic Algorithms 37

L′′

T ⊕ T = OE

OE

X

L

P

L′
Y

P ⊕Q⊕R = OE

P ⊕Q

R

Q

Figure 1.12. Geometric composition laws of an elliptic curve

This gives the required result Q = P + 2(2(2(P + 2(2(P + 2P))))) = 105P .
The above is just the idea of the fast group operations on E, as we have
not considered P and Q as the actual points (i.e., the values of the x and y
co-ordinates) on E. The following algorithm, however, provides a full version
of the fast group operation Q ≡ kP (mod N) on E

Algorithm 1.3.6 (Fast group operations kP on elliptic curves). This
algorithm will compute the point kP mod N , where k ∈ Z+ and P is an initial
point (x, y) on an elliptic curve E : y2 = x3 + ax + b over Z/NZ; if we re-
quire E over Q, just compute kP , rather than kP mod N . Let the initial point
P = (x1, y1), and the result point P = (xc, yc).

[1] (Precomputation) Write k in the following binary expansion form k =
eβ−1eβ−2 · · · e1e0. (Suppose k has β bits).

[2] [Initialization] Initialize the values for a, x1 and y1. Let (xc, yc) = (x1, y1);
this is exactly the computation task for e1 (e1 always equals 1).

[3] (Doublings and Additions) Computing kP mod N :

38 1. Computational/Mathematical Preliminaries

for i from β − 2 down to 0 do
m1 ← 3x2

c + a mod N
m2 ← 2yc mod N
M ← m1/m2 mod N
x3 ← M2 − 2xc mod N
y3 ← M(xc − x3)− yc mod N
xc ← x3

yc ← y3

if ei = 1
then c ← 2c + P

m1 ← yc − y1 mod N
m2 ← xc − x1 mod N
M ← m1/m2 mod N
x3 ← M2 − x1 − xc mod N
y3 ← M(x1 − x3)− y1 mod N
xc ← x3

yc ← y3

else c ← 2c

[4] (Exit) Print (c, xc, yc) and terminate the algorithm. The value of c will be
the value of Q = kP , and the values of xc, yc will be the values of the
x and y coordinates of Q. (Note that this algorithm will stop whenever
m1/m2 ≡ OE (mod N), that is, it will stop whenever a modular inverse
does not exit at any step of the computation.)

Exercise 1.3.1. Let
E : y2 = x3 − x− 1

be an elliptic curve over Z/1098413Z and P = (0, 1) a point on E. Use
Algorithm 1.3.6 to compute the coordinates (x, y) of the points kP on E
over Z/1098413Z for k = 8, 31, 92, 261, 513, 875, 7892, 10319. Find also the
smallest integral values of k such that kP = (467314, 689129) and kP =
(965302, 895958), respectively.

Theorem 1.3.14. Suppose that an elliptic curve E is defined over a finite
field Zn. Given P ∈ E, the coordinates of kP can be computed by Algorithm
1.3.6 in O(log k) group operations and O (

(log k)(log N)3
)

bit operations.
That is, computing kP over E is in P.

Primality Testing

The Primality Testing Problem (PTP) may be described as follows:

Input : N ∈ Z>1

Output :

{
Yes, if N ∈ Primes

No, otherwise.

(1.30)

1.3 Efficient Number-Theoretic Algorithms 39

As the RSA cryptosystem is based on the use of large prime numbers, pri-
mality testing is a very important task in the design of RSA. There are
many efficient (polynomial-time) algorithms, deterministic and randomized,
for primality testing; three of them will be briefly introduced here.

Theorem 1.3.15 (Prime Number Theorem). Let π(x) be the number
of primes up to x. Then

π(x) ∼ x/ lnx. (1.31)

That is,

lim
x→∞

π(x)
x/ lnx

= 1. (1.32)

Remark 1.3.3. The Prime Number Theorem (PNT) was postulated by
Gauss (1777–1855) in 1792 on numerical evidence. It is known that Gauss
constructed by hand a table of all primes up to three million, and inves-
tigated the number of primes occurring in each group of 1000. It was also
conjectured by Legendre (1752–1833) before Gauss, in a different form, but
of course, both Legendre and Gauss were unable to prove PNT. It was in
1896 that the French mathematician Hadamard (1865–1963) and the Belgian
mathematician de la Vallée-Poussin (1866–1962) independently proved the
theorem, using some advanced techniques from complex analysis; an elemen-
tary proof (i.e., without using calculus) was given independently by Selberg
(1917–2007) and Erdös (1913–1996) in 1949. There are thousands of theo-
rems about prime numbers, only this theorem is called the Prime Number
Theorem.

According to the prime number theorem, the probability of a randomly
chosen number N to be prime is about 1/ lnN . In August 2002 Agrawal,
Kayal and Saxena [7] proposed a deterministic polynomial-time test (AKS
test for short) for primality, relying on no unproved assumptions. It is not a
great surprise that such a test exists, since Dixon [104] predicated in 1984 that
“the prospect for a polynomial-time algorithm for proving primality seems
fairly good, but it may turn out that, on the contrary, factoring is NP-hard”.
However, the simplicity of the test is indeed a big surprise.

Algorithm 1.3.7 (AKS test). Give a positive integer N > 1, this algorithm
will decide whether or not N is prime in deterministic polynomial-time.

[1] If N = ab with a ∈ N and b > 1, then output COMPOSITE.

[2] Find the smallest r such that ordr(N) > 4(log N)2.

[3] If 1 < gcd(a,N) < N for some a ≤ r, then output COMPOSITE.

[4] If N ≤ r, then output PRIME.

40 1. Computational/Mathematical Preliminaries

[5] For a = 1 to b2
√

φ(r) log Nc do

if (x− a)N 6≡ (xN − a) (mod xr − 1, N),

then output COMPOSITE.

[6] Output PRIME.

The test is indeed very simple and short (with only 6 statements), possibly
the shortest algorithm for a (big and previously) unsolved problem ever!

Theorem 1.3.16. The AKS test returns PRIME if and only if n is prime, and
runs in P (more specifically in O((log N)10.5); the original AKS test runs in
O((log N)12).

Proof. See [7] or [337]. 2

Clearly, the AKS test is a rather high order polynomial-time algorithm,
which is obviously not so practically useful. In practice, we would like to have
a combined use of a Rabin-Miller test (in RP) and an Atkin-Morain ECPP
test (in ZPP), which should be almost infallible for all practical purposes.
Thus, in practice, we can first perform a Rabin-Miller test on N (Maple
provides an even better primality test isprime, which is in fact a combined
test of a Rabin-Miller test and a Lucas test). If N can pass the Rabin-Miller
test or the Maple isprime test, then we perform one more test, namely, the
ECPP test. If N can still pass the ECPP test, then it is a prime for sure, as
ECPP is a ZPP test.

Algorithm 1.3.8 (Miller-Rabin test). This algorithm will test N for pri-
mality with high probability:

[1] Let N be an odd number, and the base b a random number in the range
1 < b < N . Find j and d with d odd, so that N − 1 = 2jd.

[2] Set i ← 0 and y ← bd (mod N).
[3] If i = 0 and y = 1, or y = N − 1, then terminate the algorithm and output

“n is probably prime”. If i > 0 and y = 1 goto [5].

[4] i ← i + 1. If i < j, set y ≡ y2 (mod N) and return to [3].

[5] Terminate the algorithm and output “N is definitely not prime”.

Theorem 1.3.17. The Miller-Rabin test runs in expected time O((log N)3),
and if the generalized Riemann hypothesis is true then the test can be run
deterministically in time O((log N)5).

Proof. Let b < N be a positive integer. Then the primality of N can
be determined in expected time O((log N)3), since only O(log N) modu-
lar exponentiations may be needed and each of them takes O((log N)2) bit
operations, resulting O(log N) · O((log N)2) = O((log N)3). If the general-
ized Riemann hypothesis (for L-functions of quadratic characters [335]) is

1.4 Intractable Number-Theoretic Problems 41

true and N is composite, then there is a b with 1 < b < 2(log N)2 [267]
such that N fails the Miller-Rabin test for b. To discover such a b requires
O((log N)3) · O((log N)2) = O((log N)5) bit operations. 2

The basic theory of elliptic curve tests may be given by the following
theorem:

Theorem 1.3.18 (Cox [89]). Let N ∈ N>13 with gcd(N, 6) = 1, and let
E : y2 ≡ x3 + ax + b (mod N) be an elliptic curve over ZN . Suppose that

1) N + 1− 2
√

N ≤ |E(ZN)| ≤ N + 1 + 2
√

N .
2) |E(ZN)| = 2q, with q an odd prime.

If P 6= OE is a point on E and qP = OE on E, then N is prime.

There are two main types of elliptic curve tests: Goldwasser-Kilian [123]
and Atkin-Morain [14]. The currently fastest version of Atkin-Morain test,
fastECPP [222], runs in expected time O((log N)4). So, for all practical pur-
poses, we could just simply use a combined test of a probabilistic such as
Miller-Rabin or Maple isprime) and an elliptic curve test such as ECPP as
follows.

Algorithm 1.3.9 (Practical primality testing). Given a random odd
positive integer n, this algorithm will make a combined use of probabilis-
tic tests and elliptic curve tests to determine whether or not n is prime:

[1] (Primality Testing – Probabilistic Testing) Use a combination of the strong
pseudoprimality test and the Lucas pseudoprimality test to determine if n is
a probable prime. (This has been implemented in Maple function isprime.)
If it is, go to [2], else report that n is composite and go to [3].

[2] (Primality Proving – Elliptic Curve Proving) Use an elliptic curve test (e.g.,
the ECPP test) to verify whether or not n is indeed a prime. If it is, then
report that n is prime, otherwise, report that n is composite.

[3] (Exit) Terminate the algorithm.

1.4 Intractable Number-Theoretic Problems

One of the most important features of number theory is that problems in
number theory are easy to state but often very hard to solve. The following
are just some of the problems that are still unsolved to date:

42 1. Computational/Mathematical Preliminaries

Figure 1.13. Goldbach’s Letter to Euler

(1) The Goldbach Conjecture: In a letter to Euler (1707–1783), dated 7 June
1742 (see Figure 1.13), Goldbach (1690–1764) conjectured that every even
integer greater than 4 is the sum of two prime numbers, such as 6 = 3+3,
8 = 3+5, 10 = 3+7 = 5+5, 12 = 5+7. 14 = 3+11, 16 = 3+13 = 5+11,
18 = 5 + 13 = 7 + 11, etc. Euler believed it to be true but was unable to
produce a proof during his lifetime. Despite much effort this conjecture
remains unsolved to this day, and the best rigorous result remains that
every sufficiently large even integer can be written as the sum of a prime
and a product of at most two primes (e.g., 100 = 23 + 7 · 11), proved by
the Chinese mathematician J. R. Chen (1933–1996) in 1966 (full proof
provided in 1973 [65]), whereas the most recent numerical result is that
the conjecture is true up to 1018, verified by Silva on 25 April 2007 [289].
Faber and Faber Publishers offered a $1,000,000 prize to anyone who
can prove/disprove Goldbach’s conjecture between 20 March 2000 and

1.4 Intractable Number-Theoretic Problems 43

20 March 2002, but the prize went unclaimed and the conjecture remains
open.

(2) Riemann Hypothesis: Let s be a complex variable (we write s = σ + it
with σ and t real, where σ = Re(s) is the real part of s, whereas t = Im(s)
is the imaginary part of s). Then the Riemann ζ-function, ζ(s), is defined
to be the sum of the following series

ζ(s) =
∞∑

n=1

n−s. (1.33)

Bernhard Riemann (1826–1866) in 1859 calculated the first five complex

ζ(1/2 + itn) = 0

1/2− (14.13...)i

1/2 + (14.13...)i

−2 11/20

1/2 + (21.02...)i

1/2 + (25.01...)i

1/2− (25.01...)i

1/2− (21.02...)i

−4

1/2 + (32.93...)i
1/2 + (30.42...)i

1/2− (30.42...)i
1/2− (32.93...)i

it

σ

30i

10i

20i

−10i

−20i

−30i

ζ(−2n) = 0, n > 1

Figure 1.14. The First Five Zeros of ζ-Function above σ-Axis

zeros of the ζ-function above the σ-axis and found that they lie on the
vertical line σ = 1/2. He then conjectured that all the nontrivial (com-
plex) zeros ρ of ζ(s) lying in the critical strip 0 < Re(s) < 1 must lie
on the critical line Re(s) = 1/2. That is, ρ = 1/2 + it, where ρ denotes

44 1. Computational/Mathematical Preliminaries

a nontrivial zero of ζ(s). Note that the real zeros are the trivial zeros,
as ζ(−2n) = 0 when n = 1, 2, 3, · · · . The Riemann hypothesis may be
true, it may also be false. At present, no-one knows whether or not it
is true. The Clay Mathematics Institute of Cambridge in Massachusetts
has named the Riemann hypothesis as one of its seven millennium Prize
Problems [36]; the Board of Directors of the institute designated on 24
May 2000 $7 million prize fund for the solution to these problems, with
$1 million allocated to each.

(3) Twin Prime Conjecture: Twin primes are defined to be pairs (p, p + 2),
such that both p and p + 2 are prime. For example, (3, 5), (17, 19) and
(1997, 1999) are twin primes. The largest known twin primes, found in
2002, are 33218925 · 2169690 ± 1, each with 51090 digits. It is conjectured
but not yet proven that: let π2(x) be the number of primes p such that
if p ≤ x is prime, and p + 2 is also prime, then

(3-1) A weak form: There are infinitely many twin primes. That is,

lim
x→∞

π2(x) = ∞. (1.34)

(3-2) A strong form: Let

L2(x) = 2
∏

p≥3

p(p− 2)
(p− 1)2

∫ x

2

dt

ln2 t

≈ 1.320323632
∫ x

2

dt

ln2 t
(1.35)

then

lim
x→∞

π2(x)
L2(x)

= 1. (1.36)

Using very complicated arguments based on sieve methods, the Chinese
mathematician J. R. Chen showed that there are infinitely many pairs
of integers (p, p + 2), with p prime and p + 2 a product of at most two
primes.

(4) Mersenne Prime Conjecture: Mersenne primes are primes of the form 2p−
1, where p is prime. The largest known Mersenne prime is 232582657 − 1,
with 9808358 digits, and found in Sept 2006. Forty-four Mersenne primes
have been found to date (see Table 1.1; the first four were appeared in
Euclid’s Elements 2000 year ago). It is conjectured but not yet proven that
there are infinitely many Mersenne primes. An interesting property of the
Mersenne primes is that whenever 2p−1 is a Mersenne prime, 2p−1(2p−1)
will be a perfect number (note that a number n is a perfect number if
σ(n) = 2n; for example, 6,28,496,8128 are the first four perfect numbers).
That is, n is a perfect number if and only if n = 2p−1(2p−1), where 2p−1

1.4 Intractable Number-Theoretic Problems 45

No. p Digits Time No. p Digits Time

1 2 1 – 2 3 1 –

3 5 2 – 4 7 3 –

5 13 4 1456 6 17 6 1588

7 19 6 1588 8 31 10 1772

9 61 19 1883 10 89 27 1911

11 107 33 1914 12 127 39 1876

13 521 157 1952 14 607 183 1952

15 1279 386 1952 16 2203 664 1952

17 2281 687 1952 18 3217 969 1957

19 4253 1281 1961 20 4423 1332 1961

21 9689 2917 1963 22 9941 2993 1963

23 11213 3376 1963 24 19937 6002 1971

25 21701 6533 1978 26 23209 6987 1979

27 44497 13395 1979 28 86243 25962 1982

29 110503 33265 1988 30 132049 39751 1983

31 216091 65050 1985 32 756839 227832 1992

33 859433 258716 1994 34 1257787 378632 1996

35 1398269 420921 1996 36 2976221 895932 1997

37 3021377 909526 1998 38 6972593 2098960 1999

39 13466917 4053946 2001 40 20996011 6320430 2003

41 24036583 7235733 2004 42 25964951 7816230 2005

43 30402457 9152052 2005 44 32582657 9808358 2006

Table 1.1. The 44 Known Mersenne Primes

is a Mersenne prime. This is the famous Euclid-Euler theorem which took
about 2000 years to prove; the sufficient condition was established by
Euclid in his Elements, but the necessary condition was established by
Euler in work published posthumously. Again, we do not know if there
are infinitely many perfect numbers, particularly, we do not know if there
is an odd perfect number; what we know is that there is no odd perfect
numbers up to 10300, due to Brent, et al [52]. Whether or not there is an
odd perfect number is one of the most important unsolved problems in
all of mathematics.

(5) Arithmetic Progression of Consecutive Primes: An arithmetic progres-
sion of primes is defined to be the sequence of primes satisying:

p, p + d, p + 2d, · · · , p + (k − 1)d (1.37)

where p is the first term, d the common difference, and p + (k − 1)d the
last term of the sequence. For example, the following are some sequences
of the arithmetic progression of primes:

46 1. Computational/Mathematical Preliminaries

2
2 3
3 5 7
5 11 17 23
5 11 17 23 29

The longest arithmetic progression of primes is the following sequence
with 23 terms: 56211383760397+k·44546738095860 with k = 0, 1, · · · , 22.
Thanks to Green and Tao [128] who proved that there are arbitrary long
arithmetic progressions of primes (i.e., k can be any arbitrary large natu-
ral number), which enabled, among others, Tao to receive a Field Prize in
2006, an equivalent Nobel Prize for Mathematics. However, their result is
not about consecutive primes; we still do not know if there are arbitrary
long arithmetic progressions of consecutive primes, although Chowa [67]
proved in 1944 that there exists an infinity of three consecutive primes
of arithmetic progressions. Note that an arithmetic progression of con-
secutive primes is a sequence of consecutive primes in the progression.
In 1967, Jones, Lal and Blundon [160] found an arithmetic progression
of five consecutive primes 1010 + 24493 + 30k with k = 0, 1, 2, 3, 4. In the
same year, Lander and Parkin [183] discovered six in an arithmetic pro-
gression 121174811 + 30k with k = 0, 1, 2, 3, 4, 5. The longest arithmetic
progression of consecutive primes, discovered by Manfred Toplic in 1998,
is 507618446770482 · 193# + x77 + 210k, where 193# is the product of
all primes ≤ 193, i.e., 193# = 2 · 3 · 5 · 7 · · · 193, x77 is a 77-digit number
545382416838875826681897035901106590578659347646048738407819235
13421103495579, and k = 0, 1, 2, · · · , 9.

In this book, we are more interested in those number theoretic problems
that are computationally intractable, since the security of modern public-
key cryptography relies on the intractability of these problems. A problem is
computationally intractable if it cannot be solved in polynomial-time. Thus,
from a computational complexity point of view, any problem beyond P is
intractable. There are, however, different types of intractable problems (see
Figure 1.15).

(1) Provably intractable problems: Problems that are Turing computable
but can be shown in PS (P-Space), NPS (NP-Space), EXP (expo-
nential time) etc., of course outside NP, are provably and certainly in-
tractable. Note that although we do not know if P = NPS, we know
PS = NPS.

(2) Presumably intractable problems: Problems in NP but outside of P,
particularly those problem in NPC (NP-complete) such as the Trav-
elling Salesman Problem, the Knapsack Problem, and the Satisfiability
problem, are presumably intractable, since we do not know whether or
not P = NP. If P = NP, then all problems in NP will no longer be in-
tractable. However, it is more likely that P 6= NP. From a cryptographic

1.4 Intractable Number-Theoretic Problems 47

(Modular Exponentiation)

EXP

NP

Presumably Intractable

Conjectured Intractable
(IFP)

Tractable

Computable

PS = NPS

P
P = NP?

(TSP)

Provably Intractable

Figure 1.15. Tractable and Intractable Problems

point of view, it would be nice if encryption schemes can be designed to
be based on some NP-complete problems, since these types of schemes
can be difficult to break. Experience, however, tells us that very few
encryption schemes are based on NP-complete problems.

(3) Conjectured intractable problems: By conjectured intractable problems
we mean that the problems are currently inNP-complete, but no-one can
prove they must be in NP-complete; they may be in P if efficient algo-
rithms are invented for solving these problems. Typical problems in this
category include the Integer Factorization Problem (IFP), the Discrete
Logarithm Problem (DLP) and the Elliptic Curve Discrete Logarithm
Problem (ECDLP). Again, from a cryptographic point of view, we are
more interested in this type of intractable problems, and in fact, the IFP,
DLP and ECDLP are essentially the only three intractable problems that
are practical and widely used in commercial cryptography. For example,
the most famous and widely used RSA cryptographic system relies its
security on the intractability of the IFP problem.

48 1. Computational/Mathematical Preliminaries

The difference between the presumably intractable problems and the con-
jectured intractable problems is important and should not be confused. For
example, both TSP and IFP are intractable, but the difference between TSP
and IFP is that TSP has been proved to be NP-complete whereas IFP is only
conjectured to be NP-complete. IFP may be NP-complete, but also may not
be NP-complete. As commented by Prof R. P. Brent of Australian National
University (see ScienceWise@ANU – Science and Engineering at ANU, Vol
2, No 6, 2005, Page 4):

One of the hardest things to prove is the difficulty of a problem. A
problem is usually considered to be hard if no one can solve it despite
a lot of people trying over a long time. But that’s not the same thing
as proving it is difficult. It just says that no-one has been clever or
lucky enough to come up with a solution.

Thus, it is not easy to prove that a conjectured hard problem such as the
IFP problem is indeed a hard problem. In what follows, we shall examine and
study some of the conjectured intractable problems in number theory, that
are intimately connected with modern public-key cryptography, particularly
RSA and RSA-type cryptography.

The Integer Factorization Problem (IFP)

The Integer Factorization Problem (IFP), or IFP problem for short, may be
simply defined as follows. Given a positive integer N greater than 1, find a
proper factor (not necessarily prime factor) 1 < f < N of N . That is,

IFP : {N ∈ Z+
>1} find−−−−−→

hard
{f | N with 1 < f < N}.

This problem is hard to solve. A further problem related to IFP is the Prime
Factorization Problem (PFP), or PFP Problem for short, aiming at finding
all the prime factors of N :

PFP : {N ∈ Z+
>1} find−−−−−→

hard
{N =

k∏
i=1

pαi
i with αi ∈ Z+, pi ∈ Primes}.

An important theorem in Number Theory, called the Fundamental Theorem
of Arithmetic, states that

Theorem 1.4.1 (Fundamental Theorem of Arithmetic). Any positive
integer greater than 1 can be written uniquely in the following prime factor-
ization form:

N =
k∏

i=1

pαi
i (1.38)

where p1 < p2 < · · · < pk are primes and αi are positive integers.

1.4 Intractable Number-Theoretic Problems 49

Thus, the PFP Problem is to find the prime factorization (1.38) of N .
The theorem was essentially first proved by Euclid in his Elements [108], but
the first full and correct proof is found in the Disquisitiones Arithmeticae
by Gauss [118]. An interesting point to remark is that the standard proof
of the existence and uniqueness of the theorem gives no hint of an efficient
algorithm for computing the prime factorization of N . Obviously, if there is
an efficient algorithm for IFP, then by recursively executing the algorithm,
the PFP can be efficiently solved. Thus, IFP and PFP can be regarded as
computationally equivalent problems:

IFP P⇐⇒ PFP.

Note that primality testing and integer factorization are two different
problems although they are intimately connected with each other, and often
confused by many even very professional people including e.g., Bill Gates,
who mentioned in this book The Road Ahead (page 265 in [117]) that

The obvious mathematical breakthrough would be development of
an easy way to factor large prime numbers.

In prime factorization, we do not factor a prime, but a composite, and in
fact, we are trying to find prime factors from a large composite. If one wants
to factor a prime, it can be easy, say, e.g.,

13 = (2 + 3i)(2− 3i).

In fact, any prime number p satisfying p ≡ 1 (mod 4) can always be factored
into Gaussian primes [18] in the form

p = −i(a + bi)(b + ai),

but that is not the problem we are interested in RSA cryptography.
Note also that there are many integer factorization algorithms, from

ancient to modern. The only problem is that we do not have an effi-
cient factoring algorithm. The fastest factoring algorithm, the Number Field
Sieve (NFS), runs in expected time O(exp(c(log N)1/3(log log n)2/3))), where
c = (64/9)1/3 if a general version of NFS is used for an arbitrary integer N ,
and c = (32/9)1/3 if a special version of NFS is used for a special form of
numbers such as the Fermat numbers Fn = 22n

+ 1, n ≥ 5. Again, many
people are confused with efficient algorithms and algorithms (by definition,
an algorithm is an effective procedure, and an algorithm is efficient if it runs
in polynomial-time). For example, the later Professor Richard Feynman, the
1965 Noble Prize Laureate in Physics, mentioned the following statements in
his book Feynman Lectures on Computation (page 91 in [112]):

Another similar problem deals with factorization: I gave you a num-
ber m, and tell you that it is the product of two primes, m = pq.
You have to find p and q. This problem does not have an effective
procedure as yet, and it in fact forms the basis of a coding system.

50 1. Computational/Mathematical Preliminaries

Feynman was wrong! As we have just mentioned, there are many effective
procedures (i.e., algorithms), from ancient to modern, for integer factoriza-
tion, only none of them is efficient. By definition, an effective procedure is
an algorithm. Thus, Effective procedure and efficient algorithm are two differ-
ent concepts; the former is connected to computability, whereas the latter is
related to complexity. To develop an efficient (i.e., polynomial-time) factor-
ing algorithm is one of the most important research topics in computational
number theory.

The Root Finding Problem (RFP)

The k-th Root Finding Problem (RFP), or RFP Problem for short, may be
defined as follows:

kRFP : {k, N, y ≡ xk (mod N)} find−−−−−→
hard

{x ≡ k
√

y (mod N)}.

If the prime factorization of N is known, one can compute the Euler function
φ(N) and solve the linear Diophantine equation ku − φ(N)v = 1 in u and
v, and the computation x ≡ yu (mod N) gives the required value. Thus,
if IFP can be solved in polynomial-time, then RFP can also be solved in
polynomial-time:

IFP P=⇒ RFP.

The security of RSA relies on the intractability of IFP, and also on RFP;
if any one of the problems can be solved in polynomial-time, RSA can be
broken in polynomial-time.

The Quadratic Residuosity Problem (QRP)

Let N ∈ Z+
>1, gcd(y, N) = 1. Then y is a quadratic residue modulo N ,

denoted by y ∈ QRN, if the quadratic congruence

x2 ≡ y (mod N),

has a solution in x. If the congruence has no solution in x, then y is a quadratic
nonresidue modulo N , denoted by y ∈ QRN . The Quadratic Residuosity
Problem (QRP), or the QRP Problem for short, is to decide whether or not
y ∈ QRN :

QRP : {n ∈ Z+
>1, x

2 ≡ y (mod N)} decide−−−−−−→
hard

{y ∈ QRN}.

If N is prime, or the prime factorization of N is known, then QRP can be
solved simply by evaluating the Legendre symbol L(y, N). If n is not a prime
then one evaluates the Jacobi symbol J(y, N) which, unfortunately, does not
reveal if y ∈ QRN , i.e., J(y, N) = 1 does not imply y ∈ QRN (it does if N

1.4 Intractable Number-Theoretic Problems 51

is prime). For example, L(15, 17) = 1, so x2 ≡ 15 (mod 17) is soluble, with
x = ±21 being the two solutions. However, although J(17, 21) = 1 there is
no solution for x2 ≡ 17 (mod 21). Thus, when N is composite, the only way
to decide whether or not y ∈ QRN is to factor N . Thus, if IFP can be solved
in polynomial-time, QRP can also be solved in polynomial-time:

IFP P=⇒ QRP.

The security of Goldwasser-Micali probabilistic encryption scheme [124] is
based on the intractability of QRP.

The Square Root Problem (SQRT)

Let y ∈ QRN . The SQRT is to find an x such that

x2 ≡ y (mod N) or x ≡ √
y (mod N).

That is,

SQRT : {N ∈ Z+
>1, y ∈ QRn, y ≡ x2 (mod N)} find−−−−−→

hard
{x}.

When N is prime, the SQRT problem can be solved in polynomial-time.
However, when N is composite one needs to factor N first. Thus, if IFP can
be solved in polynomial-time, SQRT can also be solved in polynomial-time:

IFP P=⇒ QRP.

On the other hand, if SQRT can be solved in polynomial-time, IFP can also
be solved in polynomial-time:

SQRT P=⇒ IFP.

That is,

SQRT P⇐⇒ IFP.

It is precisely this intractability of SQRT that Rabin used to construct his
cryptosystem in 1979 [252].

The Discrete Logarithm Problem (DLP)

Let x, y, N, k ∈ Z+. The DLP problem for multiplicative group Z∗N may be
described as follows:

DLP : {n ∈ Z+
>1, x ∈ Z+, y ≡ xk (mod N)} find−−−−−→

hard
{k}.

52 1. Computational/Mathematical Preliminaries

DLP is believed to have about the same degree of difficulty as IFP; since
methods for IFP are always, subject to some modifications, applicable to
DLP.

IFP P=⇒ DLP.

Several well known cryptosystems, such as the Diffie-Hellman-Merkle key-
exchange scheme, the ElGammal systems and the DSA/DSS, base their se-
curity on the intractability of DLP.

The Elliptic Curve Discrete Logarithm Problem (ECDLP)

The ECDLP problem for the elliptic curve group E(Fp) is an extension of the
DLP problem defined previously. Let E/Fp be an elliptic curve over a finite
field Fp:

E : y2 ≡ x3 + ax + b (mod p),

E(Fp) the set of points on E/Fp, and P, Q ∈ E(Fp). Then the ECDLP is to
find the integer k (assuming that k exists) such that Q ≡ kP (mod p); that
is,

ECDLP : {P ∈ E(Fp), p ∈ Primes, Q ≡ kP (mod p)} find−−−−−→
hard

{k}.

ECDLP is believed to be harder than DLP and is the security basis for
various elliptic curve cryptosystems [337]. However, from a quantum compu-
tation point of view, all IFP, DLP and ECDLP are quantum polynomial-time
equivalent; they all can be solved in polynomial-time equivalent on a quantum
computer.

Modular Polynomial Root Finding Problem (MPRFP)

There are also many other hard number-theoretic problems. For example, it
is easy to compute the integer roots of a polynomial in one variable over Z:

p(x) = 0 (1.39)

but the following modular polynomial root finding problem (MPRFP), or the
MPRFP problem for short, can be hard:

p(x) ≡ 0 (mod N), (1.40)

which aims at finding integer roots (solutions) of the modular polynomial in
one variable. This problem can, of course, be extended to find integer roots
(solutions) of the modular polynomial in several variables as follows:

p(x, y, · · ·) ≡ 0 (mod N). (1.41)

1.4 Intractable Number-Theoretic Problems 53

Coppersmith [78] developed a powerful method to find all small solutions
x0 of the modular polynomial equations in one or two variables of degree δ
using the lattice reduction algorithm LLL [188] (we shall discuss Coppersmith
method later). Of course, for LLL to be run in reasonably amount of time in
finding such x0’s, the values of δ cannot be big.

Shortest Vector Problem (SVP)

Problems related to lattices are also often hard to solve. Let Rn denote the
space of n-dimensional real vectors a = {a1, a2, · · · , an} with usual dot prod-
uct a · b and Euclidean Norm or length ||a|| = (a · a)1/2. Zn is the set of
vectors in Rn with integer coordinates. If A = {a1, a2, · · · , an} is a set of
linear independent vectors in Rn, then the set of vectors

{
n∑

i=1

kiai : k1, k2, · · · , kn ∈ Z
}

(1.42)

is a lattice in Rn, denoted by L(A) or L(a1, a2, · · · , an). A is called a basis of
the lattice. A set of vectors in Rn is a n-dimensional lattice if there is a basis V
of n linear independent vectors such that L = L(V). If A = {a1, a2, · · · , an}
is a set of vectors in a lattice L, then the length of the set A is defined by
max(||ai||). A fundamental theorem, due to Minkowski, is as follows.

Theorem 1.4.2 (Minkowski). There is a universal constant γ, such that
for any lattice L of dimension n, ∃v ∈ L, v 6= 0, such that

||v|| = γ
√

n det (L)1/n. (1.43)

The determinant det(L) of a lattice is the volume of the n-dimensional fun-
damental parallelepiped, and the absolute constant γ is known as Hermite’s
constant.

A natural problem concerned with lattices is the shortest vector problem
(SVP), or the SVP problem for short:

Find the shortest non-zero vector in a high dimensional lattice.

Minkowski’s theorem is just an existence-type theorem and offers no clue
on how to find a short or the shortest vector non-zero vector in a high dimen-
sional lattice. There is no efficient algorithm for finding the shortest non-zero
vector, or finding an approximate short non-zero vector. The lattice reduc-
tion algorithm LLL [188] can be used to find short vectors, but it is not
effective in finding short vectors when the dimension n is large, say, for ex-
ample, n ≥ 100. This allows lattices to be used in the design of cryptographic
systems, and in fact, several cryptographic systems, such as NTRU [144] and
the Ajtai-Dwork system [9], are based on the intractability of finding the
shortest non-zero vector in a high dimensional lattice.

54 1. Computational/Mathematical Preliminaries

So the computationally intractable mathematical problems are two-edged
swords; they have both fortunate and unfortunate edges. On the one hand,
it is unfortunate for mathematicians, computer scientists and cryptanalysts
that these problems cannot be solved in polynomial-time at least at the
present time. On the other hand, it is very fortunate for cryptographers that
these intractable problems can be used to construct secure cryptographic
systems that is unbreakable in polynomial-time. For example, the most fa-
mous RSA cryptographic system is based on the intractability of the inte-
ger factorization problem (IFP). However, we must keep this in mind that
these computationally intractable mathematical problems may be solvable in
polynomial-time, or more seriously, some of the problems, for example, the
IFP problem, might have already been solved in polynomial-time secretly.

1.5 Chapter Notes and Further Reading

The theory of computability, complexity and intractability is very important
in cryptography and cryptanalysis. The following books provide a good sur-
vey on the subject: Garey and Johnson [116], Hopcroft, Motwani and Ullman
[145], Lewis and Papadimitrou [191], and Sipser [304]. In particular, the sem-
inal papers by Church [69], Turing [316], Cook [72] and karp [164] are the
classical in the field.

RSA is a number-theoretic cryptographic system, so to understand RSA,
particularly to work on the cryptanalysis of RSA, it is necessary to have
a good background in number theory, particularly in computational num-
ber theory. There are many excellent books in number theory with various
levels of difficulty. For a general coverage and a good introduction to elemen-
tary number theory, see Baker [18], Davenport [93], Everest and Ward [110],
Hardy and Wright [138], Ireland and Rosen [153], LeVeque [190], Niven et al
[231], Nathanson [227], or Silverman [294]. For analytic number theory, see
Apostol [13], Stopple [312], and Bateman and Diamond [20]. The books by
Ingham [152], Edwards [105], Patterson [235] present a good treatment on the
prime distributions and the theory of the Riemann zeta function. For alge-
braic number theory, Mollin [215], and Alaca and Williams [10] are strongly
recommended. For computational and/or algorithmic number theory, readers
should consult e.g., the following books for more information: Bach and Shal-
lit [17], Bressoud and Wagon [54], Cohen [71], Crandall and Pomerance [90],
Riesel [260], Shoup [309], and Yan [335]. Finally, background information on
lattice theory or more generally the geometry of numbers can be found in the
classical writing by Cassels [64].

2. RSA Public-Key Cryptography

The increased use of shared communications channels, particularly
wireless and local area networks (LAN’s), leads to greater connec-
tivity, but also to a much greater opportunity to intercept data and
forge messages, · · · The only practical way to maintain privacy and
integrity of information is by using public-key cryptography.

Peter Wegner
Professor of Computer Science, Brown University

2.1 Introduction

Cryptography (from the Greek Kryptós, “hidden” or “secret”, and gráphein,
“writing”) is the study of the processes of encryption (mapping the original
message, called the plaintext, into a secret form, called the the ciphertext,
using the encryption key), and decryption (inverting the ciphertext back to
the plaintext, using the corresponding decryption key), in such a way that
only the intended recipients can decrypt and read the original messages.

Cryptograpgy def= Encryption ⊕ Decryption

The methods of encryption are often also called ciphers. Cryptanalysis (from
the Greek Kryptós and analýein, “loosing”), on the other hand, is the study
of breaking the encryptions without the knowledge of the key:

Cryptanalysis def= Cryptanalytic Attacks on Encryptions

Cryptology (from the Greek Kryptós and lógos, “word”) consists of both
cryptography and cryptanalysis:

Cryptology def= Cryptography ⊕ Cryptanalysis

56 2. RSA Public-Key Cryptography

M ′
Cryptanalyst/Enemy

Message
Message

DecryptionEncryption

M = Dk(C)

Key source
(Secret key)

Public and also insecure

channel

Secure channel

MM C = Ek(M)

Figure 2.1. Cryptography and Cryptanalysis

The idea of encryption, decryption, cryptanalysis and secure communica-
tions over an insecure channel, usually a computer network particularly the
Internet, can be depicted as in Figure 2.1. Throughout the book, we shall
assume that Bob sends a message to Alice, but Eve wants to cryptanalyze
the message:

Bob
Message−−−−−−−→
↓

Eve

Bob. (2.1)

Modern cryptography, however, is the study of the mathematical systems
of encryption and decryption, to solve the security, particularly the network
security problems as follows:

(1) Confidentiality or privacy: To stop Eve to understand Bob’s message to
Alice even if she can intercept and get the message.

(2) Integrity: To make sure that Bob’s message has not been modified by
Eve.

(3) Authentication or authorization: To make sure the message received by
Alice is indeed from Bob, not from Eve.

(4) Non-repudiation: To stop Bob later to deny the sending of his message.
Non-repudiation is particularly important in electronic commerce since
we need to make sure that a consumer cannot deny the authorization
of a purchase. It must be noted that however, in some applications such
as in electronic voting, the non-repudiation feature should, in fact, be
avoided, since the voter does not want to disclose the authorization of a
vote regardless whether of not he actually did the vote.

Such a mathematical system is called the cryptographic system, or cryptosys-
tems for short.

2.1 Introduction 57

Definition 2.1.1. A conventional secret-key cryptosystem (or secret-key en-
cryption, or secret-key cipher) S may be formally defined as follows (depicted
in Figure 2.2):

S = (M, C,K,M,C, k, E,D) (2.2)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of plaintext.
(5) C ∈ C is a piece of ciphertext.
(6) k ∈ K is the key for both encryption and decryption.
(7) E is the encryption function

Ek : M 7→ C

where M ∈M maps to C ∈ C, using the key k, such that

C = Ek(M) (2.3)

(8) D is the decryption function

Dk : C 7→ M

where C ∈ C maps to M ∈M, using the same key k again such that

M = Dk(C) (2.4)

satisfying

EkDk = 1 and Dk(C) = Dk(Ek(M)) = M. (2.5)

Cryptanalysis, on the other hand, is the study of the cryptanalytic at-
tacks on cryptosystems, aiming at breaking the cryptosystems without us-
ing/knowing the keys, but according to the Kerckhoff principle, the crypt-
analyst who wants to break the cryptosystem knows the cryptosystem. For
example, the following is a ciphertext presented by Édouard Lucas at the 1891
meeting of the French Association for Advancement of Science (see page 388
of Williams [332]), based on Étienne Bazeries’ cylindrical cryptography (see
pages 244–250 of Kahn [161]); it has never been decrypted, and hence is
suitable as a good challenge to the interested reader:

58 2. RSA Public-Key Cryptography

MM

Alice
(Receiver)

Public/Insecure Channel Eve (Cryptanalyst)

Ciphertext

Plaintext

Bob
(Sender)

Plaintext Encryption Decryption

C → M ′ ?= M

M = Dk(C)C = Ek(M)
C

k
Key Source

Figure 2.2. Secret-Key Cryptography

XSJOD PEFOC XCXFM RDZME

JZCOA YUMTZ LTDNJ HBUSQ

XTFLK XCBDY GYJKK QBSAH

QHXPE DBMLI ZOYVQ PRETL

TPMUK XGHIV ARLAH SPGGP

VBQYH TVJYJ NXFFX BVLCZ

LEFXF VDMUB QBIJV ZGGAI

TRYQB AIDEZ EZEDX KS

The security or the unbreakability of any cryptographic system is of paramount
importance. There are several different types of security measures for a cryp-
tographic system:

(1) Unconditionally secure: A cryptosystem is unconditionally secure if a
cryptanalyst cannot determine how to find the plaintext M regardless
of how much ciphertext C and computer time/resources he has available
to him. A one-time pad (OTP) can be shown to be unconditionally se-
cure, as the key is used only for one time (i.e., there are at least as many
keys as the plaintexts), the key string is a random string, and the key
size is at least as long as the plaintext string. Unconditional security for
cryptosystems is called perfect secrecy, or information-theoretic security.
A cryptosystem S is unconditionally unbreakable if S is unconditionally
secure. In general, cryptosystems do not offer perfect secrecy, in particu-
lar, public-key cryptosystems, such as the RSA cryptosystem described
in next sections, cannot be unconditionally secure/breakable since once

2.1 Introduction 59

a ciphertext C is given, its corresponding plaintext M can in principle
be recovered by computing all possible plaintexts until C is obtained, an
attack called forward search, which will be discussed later. Nevertheless,
unconditionally unbreakable cryptosystem exists; it was first proved by
Shannon in his 1949 seminar paper in modern cryptography “Commu-
nication Theory of Secrecy Systems” [285]. Thus the prominent English
mathematician J. E. Littlewood (1885–1977) commented:

The legend that every cipher is breakable is of course absurd,
though still widespread among people who should know better.

(2) Computationally secure: A cryptosystem S is computationally secure
or polynomially secure if a cryptanalyst cannot decrypt C to get M in
polynomial-time (or space). A cryptosystem S is computationally un-
breakable, if it is unbreakable in polynomial-time, that is, it is compu-
tationally secure. According to the Cook-Karp thesis, any problem that
can not be solved in polynomial-time is computationally infeasible, thus,
if the cryptanalytic attack on a cryptosystem is computationally infeasi-
ble, then the cryptosystem is computationally secure and computation-
ally unbreakable. There are several types of computationally security:

(2-1) Provably secure: A cryptosystem S is provably secure if the dif-
ficulty of breaking it can be shown to be essentially as difficult as
solving a well-known and supposedly difficult mathematical problems
such as the integer factorization problem IFP or the discrete loga-
rithm problem DLP. For example, the Rabin cryptosystem described
later is provably secure, as the security of the Rabin cryptosystem is
equivalent to the IFP problem.

(2-2) Practical/conjectured secure: A cryptosystem S is practical secure
if the breaking of the system S is conjectured as difficult as solving
a well-known and supposedly difficult mathematical problems such
as the integer factorization problem IFP or the discrete logarithm
problem DLP. For example, breaking the most popular public-key
cryptosystem RSA is conjectured as hard as solving the IFP problem,
but so far this has never been proved or disproved. Most of the public-
key and secret-key cryptosystems in current use are in this type.

There are several types of possible cryptanalytic attacks on a cryptosys-
tem S, depending on what information the cryptanalyst might already have
regarding S:

(1) Ciphertext-only attack: Only a piece of ciphertext C is known to the
cryptanalyst whose goal is to find the corresponding plaintext M and/or
the key k. This is the most difficult type of attack; any cryptosystem
vulnerable to this type of attack is considered to be completely insecure.

(2) Known-plaintext attack: The cryptanalyst has a piece of plaintext M
and the corresponding ciphertext C. The goal is the find the key k so
that other ciphertexts using the same encryption/key may be decrypted.

60 2. RSA Public-Key Cryptography

(3) Chosen-plaintext attack: The cryptanalyst has gained temporary access
to the encryption machinery, so he can choose a piece of plaintext M and
construct the corresponding ciphertext C. The goal here is to find the
key k.

(4) Chosen-ciphertext attack: The cryptanalyst has gained temporary access
to the decryption machinery, so can choose a piece of ciphertext C and
construct the corresponding plaintext M . The goal here is also to find
the key k.

A good cryptosystem should resist all of these types of attacks, so that it is
impossible for a cryptanalysis to get the key k or to find the plaintext M in
polynomial-time.

Remark 2.1.1. Public-key cryptosystems, such as the RSA cryptosystem
described in the next sections, give rise to the chosen-ciphertext attack, since
the cryptanalyst may specify/obtain some ciphertext using the public-key
and learn the corresponding plaintext. In fact, all public-key cryptographic
systems are vulnerable to a chosen-ciphertext attack, which, however, can
be avoided by adding appropriate redundancy or randomness (padding or
salting) prior to encryption.

2.2 Public-Key Cryptography

Surprisingly, public-key cryptography, or asymmetric key cryptography (see
Figure 2.3), is almost the same (although the idea is different) as the secret-
key cryptography, or symmetric key cryptography, except that the keys k for
encryption and decryption are different. That is, we need two keys, ek and
dk, such that ek is used for encryption and dk for decryption, respectively. As
ek is only used for encryption, it can be made public; only dk must be kept a
secret for decryption. To distinguish public-key cryptosystems from secret-key
cryptosystems, ek is called the public key, and dk the private key; only the key
used in secret-key cryptosystems is called the secret key. Remarkably enough,
secret-key cryptography has a very long history, almost as long as our human
civilization; whereas public-key cryptography has a rather short history. In
fact the official date of birth of public-key cryptography is 1976, when Diffie
and Hellman, then both at Stanford University, published their seminal paper
New Directions in Cryptography [101] (see the first page of the paper in
Figure 2.4). It is in this seminal paper that they first publicly proposed the
completely new idea of public-key cryptography as well as digital signatures.
Although Diffie and Hellman did not have a practical implementation of their
idea, they did propose [101] an alternative key-exchange scheme over the

2.2 Public-Key Cryptography 61

MM

Alice

(Receiver)

Public/Insecure Channel Eve (Cryptanalyst)

Ciphertext

Plaintext

Bob

(Sender)

Plaintext Encryption Decryption

C → M ′ ?
= M

C

Key Source Key Source

e d

(e, d) ∈ k

M = Ee(C) C = Dd(M)

Figure 2.3. Public-Key Cryptography

insecure channel, based on the intractability of the DLP problem and using
some of the ideas proposed earlier (although published later) by Merkle [208]
(published in 1978, but submitted in 1975; see the first page of this paper in
Figure 2.5).

Shortly after the publication of Diffie and Hellman’s paper, Rivest, Shamir
and Adleman, then all at Massachusetts Institute of Technology (MIT), pro-
posed a first workable and practical public-key cryptosystem in in 1977 [262]
(see the first page of the paper in Figure 2.6). The system is now known
as RSA; it was first made public to the world and became famous probably
because Gardner’s 1978 paper in Scientific American [115].

It is interesting to note that the British cryptographers Ellis, Cocks
and Williamson at the UK Government’s Communications-Electronics Se-
curity Group/Government Communications Headquarters (CESG/GCHQ)
also claimed that they secretly discovered the public-key encryption years
before the US scientists. There are of course two different universes of cryp-
tography: public (particularly for people working in academic institutions)
and secret (particularly for people working for militaries and governments).
Ellis-Cocks-Williamson certainly deserved some credit for their contribution
to the development of public-key cryptography. It should be noted that Hell-
man and his colleagues not only invented the public-key encryption, but also
the digital signatures which had not been mentioned in any of Ellis-Cocks-
Williamson’s documents/papers.

62 2. RSA Public-Key Cryptography

Figure 2.4. The First Page of Diffie and Hellman’s Paper

The implementation of public-key cryptosystems is based on trapdoor one-
way functions.

Definition 2.2.1. Let S and T be finite sets. A one-way function

f : S → T (2.6)

is an invertible function satisfying

(1) f is easy to compute, that is, given x ∈ S, y = f(x) is easy to compute.
(2) f−1, the inverse function of f , is difficult to compute, that is, given

y ∈ T , x = f−1(y) is difficult to compute.

2.2 Public-Key Cryptography 63

Figure 2.5. The First Page of Merkle’s Paper

(3) f−1 is easy to compute when a trapdoor (i.e., a secret string of infor-
mation associated with the function) becomes available.

A function f satisfying only the first two conditions is also called a one-to-
one one-way function. If f satisfies further the third condition, it is called a
trapdoor one-way function.

64 2. RSA Public-Key Cryptography

Figure 2.6. The First Page of RSA’s Paper

Example 2.2.1. The following functions are one-way functions:

(1) f : pq 7→ n is a one-way function, where p and q are prime numbers.
The function f is easy to compute since the multiplication of p and q
can be done in polynomial time. However, the computation of f−1, the
inverse of f is hard (this is the IFP problem).

(2) f : x 7→ gx mod N is a one-way function. The function f is easy to
compute since the modular exponentiation gx mod N can be performed
in polynomial time. But the computation of f−1, the inverse of f is hard
(this is the DLP problem).

(3) f : x 7→ xk mod N is a trapdoor one-way function, where N = pq with
p and q primes, and kk′ ≡ 1 (mod φ(N)). It is obvious that f is easy

2.2 Public-Key Cryptography 65

to compute since the modular exponentiation xk mod N can be done in
polynomial time, but f−1, the inverse of f (i.e., the kth root of x modulo
N) is difficult to compute. However, if k′, the trapdoor is given, f can
be easily inverted, since (xk)k′ = x.

Now we are in a position to introduce the formal definition of public-key
cryptography.

Definition 2.2.2. A public-key cryptosystem CS may be formally defined
as follows:

S = (M, C,K,M,C, e, d, E, D) (2.7)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of particular plaintext.
(5) C ∈ C is a piece of particular ciphertext.
(6) e 6= d and (e, d) ∈ K is the key.
(7) E is the encryption function

Eek
: M 7→ C

where M ∈M maps to C ∈ C, using the public-key ek, such that

C = Eek
(M) (2.8)

(8) D is the decryption function

Ddk
: C 7→ M

where C ∈ C maps to M ∈M, using the private-key dk such that

M = Ddk
(C) (2.9)

satisfying

Eek
Ddk

= 1 and Ddk
(C) = Ddk

(Eek
(M)) = M. (2.10)

The main task in public-key cryptography is to find a suitable trap-door
one-way function, so that both encryption and decryption are easy to perform
for authorized users, whereas decryption, the inverse of the encryption, should
be computationally infeasible for an unauthorized user.

66 2. RSA Public-Key Cryptography

2.3 RSA Public-Key Cryptography

This section introduces the basic idea and theory of the most popular and
widely-used public-key cryptosystem RSA.

Definition 2.3.1. The RSA public-key cryptosystem may be formally de-
fined as follows (Depicted in Figure 2.7):

MM

Alice

(Receiver)

Public/Insecure Channel Eve (Cryptanalyst)

Ciphertext

Plaintext

Bob

(Sender)

Plaintext Encryption Decryption

C → M ′ ?
= M

C

Key Source Key Source

M ≡ Cd (mod N)C ≡ Me (mod N)

(e, N) (d, N)

(e, d, N) ∈ k

Figure 2.7. RSA Public-Key Cryptography

RSA = (M, C,K,M,C, e, d,N,E, D) (2.11)

where

(1) M is the set of plaintexts, called the plaintext space.
(2) C is the set of cipherexts, called the ciphertext space.
(3) K is the set of keys, called the key space.
(4) M ∈M is a piece of particular plaintext.
(5) C ∈ C is a piece of particular ciphertext.
(6) N = pq is the modulus with p, q prime numbers, usually each with at

least 100 digits.
(7) {(e,N), (d,N)} ∈ K with e 6= d are the encryption and encryption keys,

respectively, satisfying

ed ≡ 1 (mod φ(N)) (2.12)

where φ(N) = (p − 1)(q − 1) is the Euler φ-function and defined by
φ(N) = #(Z∗N), the number of elements in the multiplicative group Z∗N .

2.3 RSA Public-Key Cryptography 67

(8) E is the encryption function

Ee,N : M 7→ C

That is, M ∈M maps to C ∈ C, using the public-key (e,N), such that

C ≡ Me (mod N). (2.13)

(9) D is the decryption function

Dd,N : C 7→ M

That is, C ∈ C maps to M ∈M, using the private-key (d,N), such that

M ≡ Cd ≡ (Me)d (mod N). (2.14)

The idea of RSA can be best depicted in Figure 2.8.

C ≡ Me (mod N)

(e,N) public

Alice Bob

and ed ≡ 1 (mod φ(N))
such that N = pq

Alice chooses primes p, q

M ≡ Cd (mod N)

Figure 2.8. RSA Encryption and Decryption

Theorem 2.3.1 (The Correctness of RSA). Let M, C,N, e, d be plain-
text, ciphertext, encryption exponent, decryption exponent, and modulus,
respectively. Then

(Me)d ≡ M (mod N).

68 2. RSA Public-Key Cryptography

Proof. Notice first that

Cd ≡ (Me)d (mod N) (since C ≡ Me (mod N))
≡ M1+kφ(N) (mod N) (since ed ≡ 1 (mod φ(N)))
≡ M ·Mkφ(N) (mod N)
≡ M · (Mφ(N))k (mod N)
≡ M · (1)k (mod N) (by Euler′s Theorem aφ(n) ≡ 1 (mod N))
≡ M

The result thus follows. 2

Both encryption C ≡ Me (mod N) and decryption M ≡ Cd (mod N) of
RSA can be implemented in polynomial-time by Algorithm 1.3.5. For example
the RSA encryption can be implemented as follows:

Algorithm 2.3.1. Given (e,M,N), this algorithm finds C ≡ Me (mod N),
or given (d,C, N), finds M ≡ Cd (mod N) in time polynomial in log e or log d,
respectively.

Given (e,M,N) to find C Given (d,C, N) to find M
Set C ← 1 Set M ← 1
While e ≥ 1 do While d ≥ 1 do

if e mod 2 = 1 if d mod 2 = 1
then C ← C ·M mod N then M ← M · C mod N

M ← M2 mod N C ← C2 mod N
e ← be/2c d ← bd/2c

Print C Print M

Remark 2.3.1. For the decryption process in RSA, as the authorized user
knows d and hence knows p and q, thus instead of directly working on M ≡
Cd (mod N), he can speed-up the computation by working on the following
two congruences:

Mp ≡ Cd ≡ Cd mod p−1 (mod p)

Mq ≡ Cd ≡ Cd mod q−1 (mod q)

and then use the Chinese Remainder Theorem to get

M ≡ Mp · q · q−1 mod p + Mq · p · p−1 mod q (mod N). (2.15)

The Chinese Remainder Theorem is a two-edged sword. On the one hand, it
provides a good way to speed-up the computation/performance of the RSA
decryption, which can even be easily implemented by a low-cost crypto-chip
[129]. On the other hand, it may introduce some serious security problems
vulnerable to some side-channel attacks, particularly the random fault at-
tacks; we shall discuss this in Section 8.4.

2.3 RSA Public-Key Cryptography 69

Example 2.3.1. Let the letter-digit encoding be as follows:

space = 00, A = 01, B = 02, · · · , Z = 26.

(We will use this digital representation of letters throughout the book.) Let
also

e = 9007,

M = 200805001301070903002315180419000118050019172105011309
190800151919090618010705,

N = 114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541.

Then the encryption can be done by using Algorithm 2.3.1:

C ≡ Me

≡ 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154 (mod N).

For the decryption, since the two prime factors p and q of N are known to
the authorized person who does the decryption:

p = 34905295108476509491478496199038981334177646384933878
43990820577,

q = 32769132993266709549961988190834461413177642967992942
539798288533,

then

d ≡ 1/e

≡ 106698614368578024442868771328920154780709906633937862
≡ 801226224496631063125911774470873340168597462306553968
≡ 544513277109053606095 (mod (p− 1)(q − 1)).

Thus, the original plaintext M can be recovered either directly by using
Algorithm 2.3.1, or indirectly by a combined use of Algorithm 2.3.1 and the
Chinese Remainder Theorem (2.15):

M ≡ Cd

= 200805001301070903002315180419000118050019172105011309
190800151919090618010705 (mod N)

which is “THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE”.

70 2. RSA Public-Key Cryptography

Remark 2.3.2. Prior to RSA, Pohlig and Hellman in 1978 [241] proposed a
secret-key cryptography based on arithmetic modulo p, rather than N = pq.
The Pohlig-Hellman system works as follows: Let M and C be the plain
and cipher texts, respectively. Choose a prime p, usually with more than 200
digits, and a secret encryption key e such that e ∈ Z+ and e ≤ p−2. Compute
d ≡ 1/e (mod (p− 1)). (e, p) and of course d must be kept as a secret.

[1] Encryption:

C ≡ Me (mod p). (2.16)

This process is easy for the authorized user:

{M, e, p} find−−−−−→
easy

{C ≡ Me (mod p)}. (2.17)

[2] Decryption:

M ≡ Cd (mod p). (2.18)

For the authorized user who knows (e, p), this process is easy, since d can
be easily computed from e.

[3] Cryptanalysis: The security of this system is based on the infeasibility
of the Discrete Logarithm Problem. For example, for a cryptanalyst who
does not know e or d would have to compute:

e ≡ logM C (mod p).

Remark 2.3.3. One of the most important features of RSA encryption is
that it can also be used for digital signatures. Let M be a document to be
signed, and N = pq with p, q primes, (e, d) the public and private exponents
as in RSA encryption scheme. Then the processes of RSA signature signing
and signature verification are just the same as that of the decryption and
encryption; that is use d for signature signing and e signature verification as
follows (see also Figure 2.9):

[1] Signature signing:

S ≡ Md (mod N) (2.19)

The signing process can only be done by the authorized person who has
the private exponent d.

[2] Signature verification:

M ≡ Se (mod N) (2.20)

This verification process can be done by anyone since (e,N) is public.

Of course, RSA encryption and RSA signature can be used together to obtain
a signed encrypted document to be sent over an insecure network.

2.4 RSA Problem and RSA Assumption 71

M ≡ Se (mod N)

S ≡ Md (mod N)
Alice Bob

and ed ≡ 1 (mod φ(N)
such that N = pq

Alice chooses primes p, q

(e,N) public

Figure 2.9. RSA Digital Signature

2.4 RSA Problem and RSA Assumption

As can be seen from the previous section, the whole idea of the RSA encryp-
tion and decryption is as follows:

C ≡ Me (mod N),
M ≡ Cd (mod N)

}
(2.21)

where

ed ≡ 1 (mod φ(N))
N = pq with p, q ∈ Primes.

}
(2.22)

Thus, the RSA function can be defined by

fRSA : M 7→ Me mod N. (2.23)

The inverse of the RSA function is then defined by

f−1
RSA : Me 7→ M mod N. (2.24)

Clearly, the RSA function is a one-way trap-door function, with

{d, p, q, φ(N)} (2.25)

72 2. RSA Public-Key Cryptography

the RSA trap-door informationmitrap-door information. For security pur-
poses, this set of information must be kept as a secret and should never be
disclosed in anyway even in part. Now suppose that Bob sends C to Alive,
but Eve intercepts it and wants to understand it. Since Eve only has (e,N,C)
and does not have any piece of the trap-door information in (2.25), then it
should be infeasible/intractable for her to recover M from C:

{e,N,C ≡ Me (mod N)} hard−−−−−→ {M ≡ Cd (mod N)}. (2.26)

On the other hand, for Alice, since she knows d, which implies that she knows
all the pieces of trap-door information in (2.25), since

{d} P⇐⇒ {p} P⇐⇒ {q} P⇐⇒ {φ(N)} (2.27)

We shall explain the relations in (2.27) in Chapter 6). Thus, it is easy for
Alice to recover M from C:

{N, C ≡ Me (mod N)} {d,p,q,φ(N)}−−−−−−−−−−−→
easy

{M ≡ Cd (mod N)}. (2.28)

Why is it hard for Eve to recover M from C? This is because Eve is facing
a hard computational problem, namely, the RSA problem [264]:

The RSA problem: Given the RSA public-key (e,N) and the RSA
ciphertext C, find the corresponding RSA plaintext M . That is,

{e,N,C} −−−−→ {M}.
It is conjectured although it has never been proved or disproved that:

The RSA conjecture: Given the RSA public-key (e,N) and the
RSA ciphertext C, it is hard to find the corresponding RSA plaintext
M . That is,

{e,N,C} hard−−−−−→ {M}.
But how hard is it for Alice to recover M from C? This is another version of
the RSA conjecture, often called the RSA assumption, which again has never
been proved or disproved:

The RSA assumption: Given the RSA public-key (e,N) and the
RSA ciphertext C, then finding M is as hard as factoring the RSA
modulus N . That is,

IFP(N) ⇐⇒ RSA(M)

provided that N is sufficiently large and randomly generated, and M
and C are random integers between 0 and N − 1. More precisely, it
is conjectured (or assumed) that

IFP(N) P⇐⇒ RSA(M).

2.5 RSA-Type Crytposystems 73

That is, if N can be factorized in polynomial-time, then M can be recov-
ered from C in polynomial-time. In other words, cryptoanalyzing RSA must
be as difficult as solving the IFP problem. But the problem is, as we dis-
cussed previously, that no one knows whether or not IFP can be solved in
polynomial-time, so RSA is only assumed to be secure, not proved to be
secure:

IFP(N) is hard −→ RSA(M) is secure.

The real situtaion is that

IFP(N)
√

=⇒ RSA(M),

IFP(N) ?⇐= RSA(M).

Now we can return to answer the question that how hard is it for Alice to
recover M from C? By the RSA assumpition, cryptanalyzing C is as hard as
factoring N . The fastest known integer factorization algorithm, the Number
Field Sieve (NFS), runs in time

O(exp(c(log N)1/3(log log N)2/3))

where c = (64/9)1/3 if a general version of NFS, GNFS, is used for factoring
an arbitrary integer N whereas c = (32/9)1/3 if a special version of NFS,
SNFS, is used for factoring a special form of integer N . As in RSA, the
modululs N = pq is often chosen be a large general composite integer N = pq
with p and q the same bit size, which makes SNFS is not useful. This means
that RSA cannot be broken in polynomial-time, but in subexponential-time,
which makes RSA secure, again, by assumption. Thus, readers should note
that the RSA problem is assumed to be hard, and the RSA cryptosystem is
conjectured to be secure .

2.5 RSA-Type Crytposystems

RSA is a cryptographic system based on factoring as its security relies on
the intractability of the Integer Factorization Problem (IFP). However, RSA
is not the only cryptographic system based on factoring. There are in fact
many cryptographic systems whose security depends on the intractability of
the IFP problem. In this section, we study some of these systems. If the RSA
problem can be solved in polynomial-time, all the factoring based crypto-
graphic systems can be broken in polynomial-time. Thus, we could regard
all the factoring based cryptographic systems as various variants of the RSA
cryptographic systems, or RSA-type cryptosystems. In a more broad sense, as
IFP is related to DLP/ECDLP, all DLP/ECDLP-based cryptosystems may
also be regarded as RSA-type cryptosystems.

74 2. RSA Public-Key Cryptography

Rabin’s M2 Cryptoystem

As can be seen from the previous sections, RSA uses Me for encryption,
with e ≥ 3 (3 is the smallest possible public exponent), we might call RSA
encryption Me encryption. In 1979, Michael Rabin proposed a scheme based
on M2 encryption. rather than the Me for e ≥ 3 encryption used in RSA. A
brief description of the Rabin system is as follows (see also Figure 2.10).

[1] Key generation: Let N = pq with p, q odd primes satisfying

p ≡ q ≡ 3 (mod 4). (2.29)

[2] Encryption:

C ≡ M2 (mod N). (2.30)

[3] Decryption: Use the Chinese Remainder Theorem to solve the system
of congruences:

{
Mp ≡

√
C (mod p)

Mq ≡
√

C (mod q)
(2.31)

to get the four solutions: {±Mp,±Mq}. The true plaintext M will be one
of these four values.

[4] Cryptanalysis: A cryptanalyst who can factor N can compute the four
square roots of C modulo N , and hence can recover M from C. Thus,
breaking the Rabin system is equivalent to factoring N .

Unlike the RSA cryptosystem whose security was only conjectured to
be equivalent to the intractability of IFP, the security of Rabin-Williams is
proved to be equivalent to the intractability of IFP. First notice that there is
a fast algorithm to compute the square roots modulo N if N = pq is known.

Consider the following quadratic congruence

x2 ≡ y (mod p) (2.32)

there are essentially three cases for the prime p:

(1) p ≡ 3 (mod 4),
(2) p ≡ 5 (mod 8),
(3) p ≡ 1 (mod 8).

All three cases may be solved by the following process:

if p ≡ 3 (mod 4), x ≡ ±y
p+1
4 (mod p),

if p ≡ 5 (mod 8),

if y
p+1
4 = 1, x ≡ ±y

p+3
8 (mod p)

if y
p+1
4 6= 1, x ≡ ±2y(4y)

p−5
8 (mod p).

(2.33)

2.5 RSA-Type Crytposystems 75

M = {±Mp,±Mq}

p ≡ q ≡ 3 (mod 4)
(p, q) secret

Mp ≡ C2 (mod p)
Mq ≡ C2 (mod q)

Alice chooses primes p, q such that

C ≡ M2 (mod N)

N public

BobAlice

Figure 2.10. Rabin System

Algorithm 2.5.1 (Computing Square Roots Modulo pq). Let N = pq
with p and q odd prime and y ∈ QRN . This algorithm will find all the four
solutions in x to congruence x2 ≡ y (mod pq) in time O((log p)4).

[1] Use (2.33) to find a solution r to x2 ≡ y (mod p).
[2] Use (2.33) to find a solution s to x2 ≡ y (mod q).
[3] Use the Extended Euclid’s algorithm to find integers c and d such that

cp + dq = 1.

[4] Compute x ≡ ±(rdq ± scp) (mod pq).

On the other hand, if there exists an algorithm to find the four solutions
in x to x2 ≡ y (mod N), then there exists an algorithm to find the prime
factorization of N . The following is the algorithm.

Algorithm 2.5.2 (Factoring via Square Roots). This algorithm seeks to
find a factor of N by using an existing square root finding algorithm (namely,
Algorithm 2.5.1).

[1] Choose at random an integer x such that gcd(x,N) = 1, and compute
x2 ≡ a (mod N).

[2] Use Algorithm 2.5.1 to find four solutions in x to x2 ≡ a (mod N).

76 2. RSA Public-Key Cryptography

[3] Choose one of the four solutions, say y such that y 6≡ ±x (mod N), then
compute gcd(x± y, N).

[4] If gcd(x± y, N) reveals p or q, then go to step [5], or otherwise, go to step
[1].

[5] Exit.

Theorem 2.5.1. Let N = pq with p, q odd prime. If there exists a polynomial-
time algorithm A to factor N = pq, then there exists an algorithm B to find
a solution to x2 ≡ y (mod N), for any y ∈ QRN .

Proof. If there exists an algorithm A to factor N = pq, then there ex-
ists an algorithm (in fact, Algorithm 2.5.1), which determines x = ±(rdq ±
scp) (mod pq), as defined in Algorithm 2.5.1, for x2 ≡ y (mod N). Clearly,
Algorithm 2.5.1 runs in polynomial-time. 2

Theorem 2.5.2. Let N = pq with p, q odd prime. If there exists a polynomial-
time algorithm A to find a solution to x2 ≡ a (mod N), for any a ∈ QRN ,
then there exists a probabilistic polynomial time algorithm B to find a factor
of N .

Proof. First note that for N composite, x and y integer, if x2 ≡ y2 (mod N)
but x 6≡ ±y (mod N), then gcd(x + y, N) are proper factors of n. If there
exists an algorithm A to find a solution to x2 ≡ a (mod N) for any a ∈
QRN , then there exists an algorithm (in fact, Algorithm 2.5.2), which uses
algorithm A to find four solutions in x to x2 ≡ a (mod N) for a random x
with gcd(x,N) = 1. Select one of the solutions, say, y 6≡ ±x (mod N), then
by computing gcd(x± y, N), the probability of finding a factor of N will be
≥ 1/2. If Algorithm 2.5.2 runs for k times and each time randomly chooses
a different x, then the probability of not factoring N is ≤ 1/2k. 2

So, finally, we have

Theorem 2.5.3. Factoring integers, computing the modular square roots,
and breaking the Rabin cryptosystem are computationally (deterministic
polynomial-time) equivalent. That is,

IFP(N) P⇐⇒ Rabin(M). (2.34)

Williams’ Improved M2 Cryptoystem

Williams [327] proposed a modified version of the RSA cryptographic system,
particularly the Rabin’s M2 system in order to make it suitable as a public-
key encryption scheme (Rabin’s original system was intended to be used as
a digital signature scheme). A description of Williams’ M2 encryption is as
follows (suppose Bob wishes to send Alice a ciphertext C ≡ M2 (mod N)):

2.5 RSA-Type Crytposystems 77

[1] Key generation: Let N = pq with q and q primes such that

p ≡ 3 (mod 8)
q ≡ 7 (mod 8)

}

So, N ≡ 5 (mod 8) and (N, 2) is used public-key. The private-key d is
defined by

d =
(p− 1)(q − 1)

4
+ 1

[2] Encryption: Let M be plaintext space containing all possible plaintexts
M such that

2(2M + 1) < N if the Jacobi symbol
(

2M + 1
N

)
= −1

4(2M + 1) < N if the Jacobi symbol
(

2M + 1
N

)
= 1

The first step in encryption is for all M ∈M, put

M ′ = E1(M) =

{
2(2M + 1) if the Jacobi symbol

(
2M+1

N

)
= −1

4(2M + 1) if the Jacobi symbol
(

2M+1
N

)
= 1.

The last step in encryption is just the same as Rabin’s encryption:

C ≡ (M ′)2 (mod N)

[3] Decryption: On the reverse order of the encryption, the first step in
decryption is as follows:

C ′ = D2(C) ≡ Cd (mod N)

and the last step in decryption is defined by:

M = D1(C ′) =

M′
4 −1

2 if M ′ ≡ 0 (mod 4)

N−M′
4 −1

2 if M ′ ≡ 1 (mod 4)

M′
2 −1

2 if M ′ ≡ 2 (mod 4)

N−M′
2 −1

2 if M ′ ≡ 3 (mod 4).

The whole process of encryption and decryption is as follows:

M
E1−→ M ′ E2−→ C

D2−→ M ′ D1−→ M.

78 2. RSA Public-Key Cryptography

[4] Cryptanalysis: A cryptanalyst who can factor N can find d, and hence
can recover M from C. Thus, breaking the Williams’ system is equivalent
to factoring N .

Theorem 2.5.4 (Correctness of Williams’ M2 encryption). Let M ∈
M. Then

M = D1(D2(E2(E1(M)))).

Theorem 2.5.5 (Equivalence of Williams(M) and IFP(N)). Breaking
Williams’ M2 encryption (i.e., finding M from C) is equivalent to factoring
the modulus N . That is,

IFP(N) P⇐⇒ Williams(M). (2.35)

For the justification od the above two theorem, see Williams [327].
Just the same as Rabin’s system, Williams’ M2 encryption is also prov-

ably secure, as breaking the Williams’ M2 mod N encryption is equivalent
to factoring N , where the N is a special form of N = pq, with p, q primes
and p ≡ 3 (mod 8) and q ≡ 7 (mod 8). Note that this special integer factor-
ization problem is not the same as the general IFP problem, although there
is no any known reason to believe this special factoring problem is any eas-
ier than the general factoring problem. But unlike Rabin’s system, Williams’
M2 encryption can be easily generalized to the general Me encryption with
e > 2, as in RSA. Thus, Williams’ M2 encryption is not just a variant of Ra-
bin system, but also a variant of the general RSA system. In fact, Williams’
original paper [327] discussed the general case that

ed ≡
(p−1)(q−1)

4 + 1
2

(modλ(N)).

Williams’ M2 encryption improved Rabin’s M2 encryption by eliminating
the 4 : 1 ciphertext ambiguity problem in decryption without adding extra
information for removing the ambiguity. Williams in [331] also proposed a
M3 encryption variant to Rabin but eliminated the 9 : 1 ciphertext ambiguity
problem. The encryption is also proved to be as hard as factoring, although
is is again still not the general IFP problem, since N = pq was chosen to be

p ≡ q ≡ 1 (mod 3)

and
(p− 1)(q − 1)

9
≡ −1 (mod 3).

2.5 RSA-Type Crytposystems 79

LUC Cryptoystem

In 1993, Smith and Lennon proposed an RSA analog, called LUC [305], based
on Lucas sequences. Let a, b be non-zero integers and D = a2 − 4b. Consider
the equation x2 − ax + b = 0; its discriminant is D = a2 − 4b, and α and β
are the two roots:

α =
a +

√
D

2

β =
a−√D

2
.

So

α + β = a

α− β =
√

D

αβ = b.

We define the sequences (Uk) and (Vk) by

Uk(a, b) =
αk − βk

α− β

Vk(a, b) = αk + βk.

In particular, U0(a, b) = 0, U1(a, b) = 1, while V0(a, b) = 2, V1(a, b) = a. For
k ≥ 2, we also have

Uk(a, b) = aUk−1 − bUk−2

Vk(a, b) = aVk−1 − bVk−2.

The sequences

U(a, b) = (Uk(a, b))k≥0

V (a, b) = (Vk(a, b))k≥0

are called the Lucas sequences associated with the pair (a, b), in honour of
the French mathematician François Edouard Lucas (1842–1891); more infor-
mation about Lucas and Lucas sequences can be found e.g., in Yan [335].
The LUC cryptosystem works as follows (suppose Bob sends a ciphertext to
Alice):

[1] Key generation: Alice publishes her public-key (e,N), satisfying

N = pq, with p, q ∈ Primes,

ed ≡ 1 (mod (p2 − 1)(q2 − 1)), with gcd(e, (p2 − 1)(q2 − 1)) = 1.

80 2. RSA Public-Key Cryptography

[2] Encryption: Bob encrypts his message 1 < M < N−1 with gcd(M, N) =
1 as follows:

C ≡ Ve(M, 1) (mod N)

based on the Lucas sequences, and sends it to Alice.
[3] Decryption: Alice performs the decryption as follows:

M ≡ vd(C, 1) (mod N).

[4] Cryptoanalysis: Anyone who can factor N can decrypt the message.

Theorem 2.5.6 (Correctness of LUC).

vd(C, 1) ≡ M (mod N).

Proof.

vd(C, 1) ≡ vd(Ve(M, 1), 1)
≡ ved(M, 1)
≡ M (mod N).

2

Readers are suggested to consult [33], [205], [237] and [305] for more in-
formation about the LUC system, [33] also had a good discussion on both
the LUC and the Dickson cryptosystems, as Dickson polynomials and the
Lucas sequences are related to each other, and both can be used to construct
RSA-type cryptosystems.

Elliptic Curve RSA

RSA has several noted elliptic curve analogues. Before introducing ing the
EC analogue of RSA, we need two more results related the number of points
on elliptic curves over the finite field Fp.

Theorem 2.5.7 (Hasse). Let E be an elliptic curve over Fp:

Ep(a, b) : y2 = x3 + ax + b. (2.36)

Then the number of points on Ep(a, b), denoted by #(Ep(a, b)), is as follows:

#((Ep(a, b)) = 1 + p− ε

where |ε| ≤ 2
√

p.

Definition 2.5.1. Let Ep(a, b) be an elliptic curve over the finite field Fp.
The complementary group of Ep(a, b), denoted by Eq(a, b)), is the set of
points satisfying (2.36) together with a point at infinity O, where y is of the
form u

√
v, and v is a fixed non-quadratic residue modulo p and v ∈ Fp.

2.5 RSA-Type Crytposystems 81

Corollary 2.5.1. If
#((Ep(a, b)) = 1 + p− ε,

then
#(Eq(a, b))) = 1 + p + ε.

The simplest EC analogue of RSA may be described as follows [335]:

[1] Key generation: N = pq is the product of two large secret primes p
and q. Choose two random integers a and b such that EN (a, b) : y2 =
x3 + ax + b defines an elliptic curve modulo both p and q. Let

Nn = lcm(#(Ep(a, b)),#(Eq(a, b))).

Choose a value for e such that

gcd(e,Nn) = 1,

ed ≡ 1 (mod Nn).

Publish (e,N) as public-key, but keep (d, p, q,Nn) as a secret.
[2] Encryption: To encrypt a message-point M , which is a point on

EN (a, b), perform C ≡ eM (mod N).
[3] Decryption: To encrypt a ciphertext C, just perform M ≡ dC (mod

N).
[4] Cryptanalysis: Anyone who can factor N , can of course decode the

ciphertext.

In what follows, we introduce two relatively popular elliptic curve ana-
logues of RSA. The first is the KMOV cryptosystem [180], which uses a family
of supersingular elliptic curve EN (0, b) : y2 = x3 + b. An important property
of this system is that if

p, q ≡ 2 (mod 3),

then
Nn = lcm(p + 1, q + 1)

regardless of the value of b. The KMOV systems works as follows:

[1] Key generation: Let N = pq be the product of two large secret primes
p and q. Choose a supersingular elliptic curve

EN (0, b) : y2 = x3 + b

such that
Nn = lcm(p + 1, q + 1).

Choose a value for e such that

gcd(e,Nn) = 1,

ed ≡ 1 (mod Nn).

Publish (e,N) as public-key, but keep (d, p, q,Nn) as a secret.

82 2. RSA Public-Key Cryptography

[2] Encryption: To encrypt a message, e.g., M = (m1,m2), Choose a suit-
able bsuch that

b ≡ m3
2 −m3

1 (mod N)

and C is computed by

C ≡ eM (mod N)

over EN (0, b).
[3] Decryption: To encrypt a ciphertext C, perform

M ≡ dC (mod N)

over EN (0, b).
[4] Cryptanalysis: Anyone who can factor N , can find the trap-door in-

formation (d, p, q,Nn), and hence can decode the message.

The second is the Demytko cryptosystem [98], which uses fixed (a, b) for
elliptic curve

EN (a, b) : y2 = x3 + ax + b,

In particular, it uses only the x-coordinate of the points of Ep(a, b), The
system relies on the fact if x is not the x-coordinate of a point on the elliptic
curve EN (a, b), then it will be the x-coordinate of a point on of the twisted
curve Ep(a, b). Thus,

Nn = lcm(#(Ep(a, b)),#(Ep(a, b)),#(Eq(a, b)),#(Eq(a, b))).

The Demytko system works as follows:

[1] Key generation: Choose N = pq with p and q primes. Choose an
elliptic curve

EN (0, b) : y2 = x3 + b

with fixed parameters p and q. Let

Nn = lcm(#(Ep(a, b)),#(Ep(a, b)),#(Eq(a, b)),#(Eq(a, b))).

Choose a value for e such that

gcd(e,Nn) = 1,

ed ≡ 1 (mod Nn).

Publish (e,N) as public-key, but keep (d, p, q,Nn) as a secret.
[2] Encryption: To encrypt a message M , compute

C ≡ eM (mod N)

over EN (a, b).

2.5 RSA-Type Crytposystems 83

[3] Decryption: To encrypt a ciphertext C, perform

M ≡ dC (mod N)

over EN (a, b).
[4] Cryptanalysis: Anyone who can factor N , can recover M from C.

The cryptanalyst who knows the prime factorization of N , can decrypt
the message easily. Readers are advised to consult [158] and [159] for some
more recent developments in elliptic curve analogues of RSA.

ElGamal System

RSA is not only connected to the integer factorization problem, but also
connected to the discrete logarithm problem, since, e.g., M can be found by
taking the following discrete logarithm:

M ≡ logMe M (mod N)

The first public-key cryptosystem based on discrete logarithms is the El-
Gamal cryptosystem (see Figure 2.11), proposed in 1985:

[1] A prime q and a generator g ∈ F∗q are made public.
[2] Alice chooses a private integer a = aA ∈ {1, 2, · · · , q − 1}. This a is the

private decryption key. The public encryption key is ga ∈ Fq.
[3] Suppose now Bob wishes to send a message to Alice. He chooses a random

number b ∈ {1, 2, · · · , q−1} and sends Alice the following pair of elements
of Fq:

(gb, Mgab)

where M is the message.
[4] Since Alice knows the private decryption key a, she can recover M from

this pair by computing gab (mod q) and dividing this result into the
second element, i.e., Mgab.

[5] Someone who can solve the discrete logarithm problem in Fq breaks
the cryptosystem by finding the secret decryption key a from the public
encryption key ga. In theory, there could be a way to use knowledge of ga

and gb to find gab and hence break the cipher without solving the discrete
logarithm problem. However, there is no known way to go from ga and gb

to gab without essentially solving the discrete logarithm problem. So the
security of the ElGamal cryptosystem is the same as the intractability of
the discrete logarithm problem.

Surprisingly, the ElGamal cryptosystem (and in fact, almost all the ex-
isting systems, including RSA) can be easily extended to an elliptic curve
cryptosystem. The following is the elliptic curve analog of the ElGamal cryp-
tosystem (see also Figure 2.12).

84 2. RSA Public-Key Cryptography

(g, q) public

ga mod q

(gb, Mgab)

M = Mgab/(gb)a

Alice Bob

Alice chooses a Bob chooses b

Figure 2.11. ElGamal System

[1] Alice and Bob publicly choose an elliptic curve E over Fq with q = pr

and p ∈ Primes, and a random base point P ∈ E.
[2] Alice chooses a random integer ra and computes raP ; Bob also chooses

a random integer rb and computes rbP .
[3] To send a message-point M to Bob, Alice chooses a random integer k

and sends the pair of points (kP, M + k(rbP)).
[4] To read M , Bob computes

M + k(rbP)− rb(kP) = M. (2.37)

[5] An eavesdropper who can solve the discrete logarithm problem on E can,
of course, determine rb from the publicly known information P and rbP .
Since there is no known efficient way to compute discrete logarithms, the
system is secure.

Goldwasser-Micali System

The RSA encryption is deterministic in the sense that under a fixed public-
key, a particular plaintext M is always encrypted to the same ciphertext C.
Some of the drawbacks of such a deterministic scheme are:

(1) It is not secure for all probability distributions of the message space. For
example, in RSA encryption, the messages 0 and 1 always get encrypted
to themselves, and hence are easy to detect.

(2) It is easy to obtain some partial information of the secret key (p, q)
from the public modulus n (assume that n = pq). For example, when
the least-significant digit of n is 3, then it is easy to obtain the partial

2.5 RSA-Type Crytposystems 85

Alice chooses a Bob chooses b

(E, P, q) public

aP mod q

(bP, M + b(aP))

M = M + b(aP)− a(bP)

Alice Bob

Figure 2.12. Elliptic Curve Analog of ElGamal System

information that the least-significant digits of p and q are either 1 and 3
or 7 and 9 since

183 = 3 · 61 253 = 11 · 23
203 = 7 · 29 303 = 3 · 101
213 = 3 · 71 323 = 17 · 19.

(3) It is sometimes easy to compute partial information about the plaintext
M from the ciphertext C. For example, given (C, e, N), the Jacobi symbol
of M over N can be easily deduced from C:

(
C

N

)
=

(
Me

N

)(
M

N

)e

=
(

M

N

)
.

d) It is easy to detect when the same message is sent twice.

Probabilistic encryption, or randomized encryption, however, utilizes ran-
domness to attain a strong level of security, namely, the polynomial security
and semantic security, defined as follows:

Definition 2.5.2. A public-key encryption scheme is said to be polynomially
secure if no passive adversary can, in expected polynomial-time, select two
plaintexts M1 and M2 and then correctly distinguish between encryptions of
M1 and M2 with probability significantly greater that 1/2.

Definition 2.5.3. A public-key encryption scheme is said to be semantically
secure if, for all probability distributions over the message space, whatever a

86 2. RSA Public-Key Cryptography

passive adversary can compute in expected polynomial-time about the plain-
text given the ciphertext, it can also be computed in expected polynomial
time without the ciphertext.

Intuitively, a public-key encryption scheme is semantically secure if the ci-
phertext does not leak any partial information whatsoever about the plaintext
that can be computed in expected polynomial-time. That is, given (C, e, N),
it should be intractable to recover any information about M . Clearly, a public-
key encryption scheme is semantically secure if and only if it is polynomially
secure.

Recall that an integer a is a quadratic residue modulo N , denoted by
a ∈ QN , if gcd(a,N) = 1 and there exists a solution x to the congruence
x2 ≡ a (mod N), otherwise a is a quadratic nonresidue modulo N , denoted
by a ∈ QN . The Quadratic Residuosity Problem (QRP) may be stated as
follows:

Given positive integers a and n, decide whether or not a ∈ QN .

It is believed that solving QRP is equivalent to computing the prime factor-
ization of N , so it is computationally infeasible. The Jacobi symbol

(
x
N

)
is

defined for any x ∈ ZN and has a value in {1,−1}. If N is prime then

a ∈ QN ⇐⇒
(a

N

)
= 1 (2.38)

and if N is composite, then

a ∈ QN =⇒
(a

N

)
= 1 (2.39)

but
a ∈ QN

?⇐=
(a

N

)
= 1. (2.40)

However
a ∈ QN ⇐=

(a

N

)
= −1. (2.41)

That is, whenever N is composite, a may belong to QN even if
(

a
N

)
= 1.

Let Jn = {a ∈ (Z/nZ)∗ :
(

a
N

)
= 1}, then Q̃N = JN −QN . Thus, Q̃N is the

set of all pseudosquares modulo N ; it contains those elements of JN that do
not belong to QN .

In what follows, we present a cryptosystem whose security is based on the
infeasibility of the Quadratic Residuosity Problem; it was first proposed by
Goldwasser and Micali in 1984, under the term probabilistic encryption.

Algorithm 2.5.3 (Goldwasser-Micali Probabilistic Encryption).
This algorithm uses the randomized method to encrypt messages and is based
on the quadratic residuosity problem (QRP). The algorithm divides into three
parts: key generation, message encryption and decryption.

2.5 RSA-Type Crytposystems 87

[1] Key generation: Both Alice and Bob should do the following to generate
their public and secret keys:
– Select two large distinct primes p and q, each with roughly the same size,

say, each with β bits.
– Compute N = pq.

– Select a y ∈ ZN , such that y ∈ QN and
(y

N

)
= 1. (y is thus a pseu-

dosquare modulo N).
– Make (N, y) public, but keep (p, q) secret.

[2] Encryption: To send a message to Alice, Bob should do the following:
– Obtain Alice’s public-key (N, y).
– Represent the message m as a binary string m = m1m2 · · ·mk of length

k.
– For i from 1 to k do

– Choose at random an x ∈ (ZN)∗ and call it xi.
– Compute ci:

ci =

{
x2

i mod N, if mi = 0, (r.s.)

yx2
i mod N, if mi = 1, (r.p.s.),

(2.42)

where r.s. and r.p.s. represent random square and random pseu-
dosquare, respectively.

– Send the k-tuple c = (c1, c2, · · · , ck) to Alice. (Note first that each ci is
an integer with 1 ≤ ci < N . Note also that since n is a 2β-bit integer,
it is clear that the ciphertext c is a much longer string than the original
plaintext m.)

[3] Decryption: To decrypt Bob’s message, Alice should do the following:
– For i from 1 to k do

– Evaluate the Legendre symbol:

e′i =
(

ci

p

)

– Compute mi:

mi =

{
0, if e′i = 1

1, if otherwise.
(2.43)

That is, mi = 0 if ci ∈ QN , otherwise, mi = 1.

– Finally, get the decrypted message m = m1m2 · · ·mk.

One of the most important feature of the Goldwasser-Micali encryption
is that

Theorem 2.5.8. The Goldwasser-Micali probabilistic encryption based on
QRP is semantically secure.

Readers interested in semantically secure probabilistic encryption may
wish to consult [124] and [121].

88 2. RSA Public-Key Cryptography

2.6 Chapter Notes and Further Readings

The underlying number-theoretic and computational complexity-theoretic
ideas and concepts of the public-key cryptography in general and RSA cryp-
tography in particular have been introduced in this chapter.

The idea of public-key cryptography was first publicly conceived and pro-
posed by Diffie and Hellman [101], then both at Stanford University, in their
seminal paper “New Directions in Cryptography” [101]; which was in turn
based on some idea of Merkle [208], a PhD student of Hellman. Based on the
work of Diffie, Hellman and Merkle (DHM), Rivest, Shamir and Addleman
(RSA), then all at MIT, developed the first practical public-key cryptosystem
in 1977 (see [115], [261], and [262]), now known as the RSA cryptosystem.
These six people Diffie, Hellman, Merkle, Rivest, Shamir and Addleman are
now regarded as the co-inventors of the public-key cryptography. Incidently,
they jointly received the 1996 ACM Paris Kanellakis Theory and Practice
Award “for the conception and first effective realization of public-key cryp-
tography. The idea of a public-key cryptosystem was a major conceptual
breakthrough that continues to stimulate research to this day, and without
it today’s rapid growth of electronic commerce would have been impossi-
ble.” It is interesting to note that in December 1997 the Communication-
Electronics Security Group (CESG) of the British Government Communica-
tions Headquarters (GCHQ), the successor of the Blechley Park (the British
Government’s Cryptography Centre during the 2nd World War for breaking
the German Enigma codes), claimed that public-key cryptography was con-
ceived (secretly) by James H. Ellis in 1970 and implemented by two of his
colleagues Clifford C. Cocks and Malcolm J. Williamson between 1973 and
1976 in CESG, by declassifying five of their papers. The US Government’s
National Security Agency (NSA) also made a similar claim that they had
public-key cryptography a decade earlier. However, according to the “first to
publish, not first to keep secret” rule, the credit of the invention of public-key
cryptography goes to Diffie, Hellman and Merkle for their seminar idea and to
Rivest, Shamir and Adleman for their first implementation. The claims from
CESG/GCHQ and NSA, however, are interesting footnote to the history of
modern cryptography.

RSA is now the most popular cryptosystem used to safe-guard our pri-
vate communications and/or business transactions over the insecure Internet.
Readers are suggested to consult the following references for more informa-
tion about RSA cryptography and cryptnanlysis: Buchmann [60], Delfs and
Knebl [97], Wagstaff Jr. [321], Koblitz [172], [174], [175], Koblitz and Menezes
[176], Konheim [179], Mollin [216], Mao [196], Menezes et al [207], Muller
[225], Rothe [269], Salomann [274], Schneier [277], and Stamp and Low [310],
Stinson [311], de Weger [323].

There are many variants of RSA, and there are many other types of cryp-
tosystems whose security are also rely on the intractability of integer factor-

2.6 Chapter Notes and Further Readings 89

ization problem or the related discrete logarithm problem. Notable systems
on these directions include but are not limited to, Rabin’s M2 mod N system
[252], Williams M3 mod N system [327], ElGamal discrete logarithm system
[106], Koblitz [170] and Miller [213] elliptic curve discrete logarithm systems,
Goldwasser and Micali’s quadratic residuosity system [124], and Goldwasser,
Micali and Rackoff’s zero-knowledge proof system [125].

3. Integer Factorization Attacks

Of all the problems in the theory of numbers to which computers
have been applied, probably none has been influenced more than of
factoring.

Hugh C. Williams
Professor of Computer Science, University of Calgary

3.1 Introduction

Recall that the RSA encryption and decryption are defined as follows:

Ee(M) = C ≡ Me (mod N),
Dd(C) = M ≡ Cd (mod N)

where ed ≡ 1 (mod φ(N)). Recall also that the RSA problem as follows:

{e,N = pq, C ≡ Me (mod N)} find−−−−−→ {M ≡ Cd (mod N)},
where p and q are two large distinct primes. Clearly, anyone who can factor
N can solve RSAP (and hence break RSA) by computing the inverse of the
RSA function M 7→ Me:

M ≡ C1/e (mod (p−1)(q−1)) (mod N).

That is, if the prime factorization of N is given, then RSAP can be solved in
polynomial-time.

IFP P=⇒ RSAP.

However, it is not known whether or not

92 3. Integer Factorization Attacks

IFP P⇐= RSAP

although it is conjectured to be true. Recent research indicates however that
breaking RSA may be easier than factoring [40], but there is also evidence to
indicate that breaking RSA may be as hard as factoring [57] in general.

Consequently, the most direct method of breaking RSA is to factor the
RSA modulus N . Generally speaking, the most useful factoring algorithms
fall into one of the following two main categories ([46]):

(I) The running time depends mainly on the size of N , the number to be
factored, and is not strongly dependent on the size of the factor p found.
Examples are:

(1) Lehman’s method [185], which has a rigorous worst-case running
time bound O (

N1/3+ε
)
.

(2) Shanks’ SQUare FOrms Factorization method SQUFOF[199], which
has expected running time O (

N1/4
)
.

(3) Continued FRACtion (CFRAC) method [223], which under plausible
assumptions has expected running time

O
(
exp

(
c
√

log N log log N
))

= O
(
N c
√

log log N/ log N
)

,

where c is a constant (depending on the details of the algorithm);
usually c =

√
2 ≈ 1.414213562.

(4) Quadratic Sieve/Multiple Polynomial Quadratic Sieve (QS/MPQS)
[248], which under plausible assumptions has expected running time

O
(
exp

(
c
√

log N log log N
))

= O
(
N c
√

log log N/ log N
)

,

where c is a constant (depending on the details of the algorithm),

usually c =
3

2
√

2
≈ 1.060660172.

(5) Number Field Sieve (NFS) [187], which under plausible assumptions
has the expected running time

O
(
exp

(
c 3
√

log N 3
√

(log log N)2
))

,

where c = (64/9)1/3 ≈ 1.922999427 if GNFS (a general version
of NFS) is used to factor an arbitrary integer N , whereas c =
(32/9)1/3 ≈ 1.526285657 if SNFS (a special version of NFS) is used
to factor a special integer N such as N = re ± s, where r and s are
small, r > 1 and e is large. This is substantially and asymptotically
faster than any other currently known factoring method.

(II) The running time depends mainly on the size of p (the factor found) of
N . (We can assume that p ≤ √

N .) Examples are:

3.2 Fermat Factoring Attack 93

(1) Trial division, which has running time O (
p(log N)2

)
.

(2) Pollard’s “p− 1” method [242], which has running time

O (
B log B log N)2

)
,

where B is the bound of the Factor Base of small prime numbers.
(3) Pollard’s ρ-method [243] (also known as Pollard’s “rho” algo-

rithm), which under plausible assumptions has expected running time
O (

p1/2(log N)2
)
.

(4) Lenstra’s Elliptic Curve Method (ECM) [186], which under plausible
assumptions has expected running time

O
(
exp

(
c
√

log p log log p
)
· (log N)2

)
,

where c ≈ 2 is a constant (depending on the details of the algorithm).
The term O (

(log N)2
)

is a generous allowance for the cost of performing
arithmetic operations on numbers which are O(log N) or O (

(log N)2
)

bits long; these could theoretically be replaced by O (
(log N)1+ε

)
for any

ε > 0.

In practice, algorithms in both categories are important and useful. However,
for attacking RSA with modulus N , only some of the factoring methods are
useful.

Of course, there are also some other types of classifications of factoring
algorithms. For example, we can classify all factoring algorithms into deter-
ministic and non-deterministic categories; for instance, trial division factoring
algorithm is deterministic whereas the number field sieve is not determinis-
tic. We can also classify all factoring algorithms into conditional and non-
conditional categories. By conditional we mean that some pre-condition may
be given to the integer N to be factorized. For instance, let N = pq be an
odd composite with β bits, p a prime with β/2 bits and q a prime also with
β/2 bits, then given β/4 most significant (or least significant) bits of p (or
q), then there is an algorithm to factor N in polynomial-time. In this chap-
ter, we shall study various factoring methods that are particularly useful and
applicable for breaking the RSA cryptosystem with modulus N = pq.

3.2 Fermat Factoring Attack

For N to be hard to factor or for RSA to be difficult to break, p and q should
be choose to have the same bit size. However, if the p and q are too close

94 3. Integer Factorization Attacks

to each other, then Fermat’s factoring method could find them. Let N = pq,
where p ≤ q are both odd, then by setting x = 1

2 (p + q) and y = 1
2 (q − p)

we find that N = x2 − y2 = (x + y)(x − y), or y2 = x2 − N . A version of
Fermat’s factoring algorithm is given as follows, based on the above idea.

Algorithm 3.2.1 (Fermat’s factoring algorithm). Given an odd integer
N > 1, then this algorithm determines the largest factor ≤ √

N of N .

[1] Input n and set k ← b√Nc+ 1, y ← k · k −N , d ← 1
[2] If b√yc =

√
y goto step [4] else y ← y + 2 · k + d and d ← d + 2

[3] If b√yc < N/2 goto step [2] else print “No Factor Found” and goto [5]

[4] x ← √
N + y, y ← √

y, print x− y and x + y, the nontrivial factors of N

[5] Exit: terminate the algorithm.

Theorem 3.2.1. Let N = pq with p > q and ∆ = p − q. Then when ∆ <
N1/4, Fermat’s factoring algorithm can factor N efficiently.

Proof. See de Weger [323]. 2

Wagstaff [321] also suggested to choose |q − p| > 1025.

3.3 The “p ± 1” and ECM Attacks

The prime numbers p and q in RSA should also to be chosen with the proper-
ties that p±1 and q±1 have at least one prime factor greater than 1020 [321],
otherwise, p could be found efficiently by using Pollard’s “p − 1” factoring
algorithm [242] and Williams’ “p + 1” factoring algorithm [329].

Algorithm 3.3.1 (“p− 1” factoring). Let N > 1 be a composite number.
This algorithm attempts to find a nontrivial factor of N .

[1] (Initialization) Choose a ∈ ZN at random. Select a positive integer k that
is divisible by many prime powers, for example, k = lcm(1, 2, · · · , B) for
a suitable bound B (the larger B is the more likely the method will be to
succeed in producing a factor, but the longer the method will take to work).

[2] (Exponentiation) Compute ak ≡ ak (mod N).
[3] (Compute GCD) Compute f = gcd(ak − 1, N).
[4] (Factor Found?) If 1 < f < N , then f is a nontrivial factor of N , output f

and go to [6].

[5] (Start Over?) If f is not a nontrivial factor of N and if you still want to try
more experiments, then go to [2] to start all over again with a new choice
of a and/or a new choice of k, else goto [6].

3.3 The “p± 1” and ECM Attacks 95

[6] (Exit) Terminate the algorithm.

The complexity of the algorithm is O (
B log B(log N)2

)
, so the algorithm

is useful only when a small value of B is chosen.

Example 3.3.1. Use the “p−1” method to factor the number N = 540143.
Choose B = 8 and hence k = lcm(1, 2, 3, 4, 5, 6, 7, 8) = 840. Choose also
a = 2. Then

gcd(2840 − 1 mod 540143, 540143) = gcd(53046, 540143) = 421.

In fact, 540143 = 421 · 1283. Note that all the prime factors of 421 are small
as 421 − 1 = 22 · 3 · 5 · 7, the “p − 1” method is well suited for splitting 421
from 540143.

Example 3.3.2. The most successful example of using the p− 1 method is
that in 1980 Baillie [48] used it to find the prime factor p25 of the Mersenne
number

2257 − 1 = p15 · p25 · p39,

where

p15 = 535006138814359,
p25 = 1155685395246619182673033, and
p39 = 374550598501810936581776630096313181393.

Since

p25 − 1 = 23 · 32 · 192 · 47 · 67 · 257 · 439 · 119173 · 1050151

is a smooth number, the “p−1” method is good at finding the p25 of 2257−1.
It is interesting to note that 2257 − 1 was claimed to be prime by Mersenne.

The “p− 1” algorithm is usually successful in the fortunate case where N
has a prime divisor p for which p−1 has no large prime factors (i.e, p−1 is a
smooth number). Suppose that (p− 1) | k and that p - a. Since |Z∗P | = p− 1,
we have ak ≡ 1 (mod p), thus p | gcd(ak − 1, N). In many cases, we have
p = gcd(ak−1, N), so the method finds a nontrivial factor of N . In the worst
case, where (p − 1)/2 is prime, the “p − 1” algorithm is no better than the
trial division method. Since the group has fixed order p− 1 there is nothing
to be done except try a different algorithm.

Note that there is a similar method to “p−1”, called “p+1”, proposed by
H. C. Williams [329] in 1982. It is suitable for the case where N has a prime
factor p for which p + 1 has no large prime factors. Thus, both “p − 1” and
“p + 1” will be useful attack on RSA if p or q in the RSA modulus N have
the property that p + 1 or q + 1 is a smooth number. If p− 1 is not smooth,
Algorithm 3.3.1 will eventually be successful if a large B is chosen but it will
not be efficient and practical.

96 3. Integer Factorization Attacks

Note that the famous Lenstra’s Elliptic Curve factoring Method (ECM)
[186] is actually obtained from Pollard’s “p− 1” algorithm: if we can choose
a random group G with order g close to p, we may be able to perform a
computation similar to that involved in Pollard’s “p− 1” algorithm, working
in G rather than in Fp. If all prime factors of g are less than the bound B then
we find a factor of N . Otherwise, we repeat this procedure with a different
group G (and hence, usually, a different g) until a factor is found. This is the
whole idea and also the motivation of the ECM method.

Algorithm 3.3.2 (Lenstra’s Elliptic Curve Method). Let N > 1 be a
composite number, with gcd(N, 6) = 1. This algorithm attempts to find a non-
trivial factor of N . The method uses elliptic curves and is analogous to Pollard’s
“p− 1” method.

[1] (Choose an Elliptic Curve) Choose a random pair (E, P), where E is an
elliptic curve y2 = x3 + ax + b over ZN , and P (x, y) ∈ E(ZN) is a point
on E. That is, choose a, x, y ∈ ZN at random, and set b ← y2 − x3 − ax.
If gcd(4a3 + 27b2, N) 6= 1, then E is not an elliptic curve, start all over and
choose another pair (E, P).

[2] (Choose an Integer k) Just as in the “p−1” method, select a positive integer
k that is divisible by many prime powers, for example, k = lcm(1, 2, · · · , B)
or k = B! for a suitable bound B; the larger B is the more likely the method
will succeed in producing a factor, but the longer the method will take to
work.

[3] (Calculate kP) Calculate the point kP ∈ E(Z/NZ). We use the following
formula to compute P3(x3, y3) = P1(x1, y1) + P2(x2, y2) mod N :

(x3, y3) = (λ2 − x1 − x2 mod N, λ(x1 − x3)− y1 mod N),

where

λ =

m1

m2
≡ 3x2

1 + a

2y1
(mod N) if P1 = P2

m1

m2
≡ y2 − y1

x2 − x1
(mod N) otherwise.

The computation of kP mod N can be done in O(log k) doublings and
additions.

[4] (Compute GCD) If kP ≡ OE (mod N), then set m2 = z and compute
d = gcd(z, N), else goto [1] to make a new choice for “a” or even for a
new pair (E, P).

[5] (Factor Found?) If 1 < d < N , then d is a nontrivial factor of N , output d
and go to Step [7].

[6] (Start Over?) If d is not a nontrivial factor of N and if you still wish to try
more elliptic curves, then go to Step [1] to start all over again, else go to
Step [7].

3.3 The “p± 1” and ECM Attacks 97

[7] (Exit) Terminate the algorithm.

As for the “p−1” method, one can show that a given pair (E, P) is likely
to be successful in the above algorithm if N has a prime factor p for which
Zp is composed of small primes only. The probability for this successful case
happening increases with the number of pairs (E, P) that one tries.

Example 3.3.3. Use the ECM method to factor the number N = 187.

[1] Choose B = 3, and hence k = lcm(1, 2, 3) = 6. Let P = (0, 5) be a point
on the elliptic curve E : y2 = x3 + x + 25 which satisfies gcd(N, 4a3 +
27b2) = gcd(187, 16879) = 1 (note that here a = 1 and b = 25).

[2] Since k = 6 = 1102, we compute 6P = 2(P + 2P) in the following way:
[2-1] Compute 2P = P + P = (0, 5) + (0, 5):

λ =
m1

m2
=

1
10
≡ 131 (mod 187)

x3 = 144 (mod 187)
y3 = 18 (mod 187).

So, 2P = (144, 18) with m2 = 10 and λ = 131.
[2-2] Compute 3P = P + 2P = (0, 5) + (144, 18):

λ =
m1

m2
=

13
144

≡ 178 (mod 187)

x3 = 124 (mod 187)
y3 = 176 (mod 187).

So, 3P = (124, 176) with m2 = 144 and λ = 178.
[2-3] Compute 6P = 2(3P) = 3P + 3P = (124, 176) + (124, 176):

λ =
m1

m2
=

46129
352

≡ 127
165

≡ OE (mod 187).

This time m1 = 127 and m2 = 165, so the modular inverse for
127/165 modulo 187 does not exist; but this is exactly what we want!
– this type of failure is called a “pretended failure”. We now set
z = m2 = 165.

[3] Compute d = gcd(N, z) = gcd(187, 165) = 11. Since 1 < 11 < 187, 11 is
a (prime) factor of 187. In fact, 187 = 11 · 17.

The factoring methods discussed in this section are only useful either
when the RSA modulus N happens to have a prime factor or when N = pq,
p ± 1 or q ± 1 of N have small prime factors. These special cases (in fact,
faults) in the design of RSA can easily be avoided, so the next two sections
will be on the powerful general factoring methods such as the Quadratic Sieve
and the Number Field Sieve.

98 3. Integer Factorization Attacks

3.4 Quadratic Sieve Attack

The Quadratic Sieve (QS), invented by Pomerance (then at the University of
Georgia) in 1981 and first published in 1982 [245], belongs to a wide range of
factoring algorithms, called index calculus of factoring, along with Continued
FRACtion method (CFRAC) [223] and Number Field Sieve (NFS) [187]; all
of them make use of the simple but important observation that if we have
two integers x and y such that

x2 ≡ y2 (mod N), 0 < x < y < N, x 6= y, x + y 6= N, (3.1)

then gcd(x ± y, N) are possibly the nontrivial factors of N , because N |
(x + y)(x − y), but N - (x + y) and N - (x − y). For example, to factor
N = 8051, we find 902 ≡ 72 (mod N), hence gcd(90± 7, N) = (97, 83), thus
8051 = 83 · 97. How to find the x and y such that the congruence (3.1) is
satisfied is the main task of the index calculus; different methods use different
techniques to find such pairs of (x, y). A version of QS may be described as
follows:

Algorithm 3.4.1 (Quadratic Sieve). Let N be an odd composite that is
not a power. This algorithm attempts to find a nontrivial factor f of N such
that f | N and 1 < f < N .

[1] (Factor Base) Define a factor base as follows:

FB = {−1, p1, p2, · · · , pk ≤ B}

where pi are primes for which N is a quadratic residue modulo pi, and B is
the upper bound of the factor base (the largest prime in the factor base).

[2] (Smoothness) Find a1, a2, · · · , ak, close to
√

N (this can be done via e.g.,
ai = b√Nc+1, b√Nc+2, · · · , (N − 1)/2) such that each Q(ai) = a2

i −N
is smooth (a number is smooth if all its prime factors are small with respect
to the bound B. In this case, the number is called B-smooth).

[3] (Linear Algebra – Finding x2 ≡ y2 (mod N)) Use linear algebra to find a
subset U of the numbers Q(ai) = a2

i −N whose product
∏

pαi
i is a square,

say y2 mod N . That is, y2 ≡ ∏
a2

i − N . Let x be the product ai used to
form the square, modulo N . Then

3.4 Quadratic Sieve Attack 99

x2 ≡
(∏

i∈U

ai

)2

≡
∏

i∈U

(a2
i −N)

≡
∏

i∈U

Q(ai)

≡
(∏

i∈U

p
αj ,i
j

)2

≡ y2 (mod N).

[4] (Computing GCD) (f, g) = gcd(x± y, N).
[5] (OK?) If 1 < f, g < N , print (f, g) (in terms of RSA, (f, g) will be the

prime factors (p, q) of the modulus N) and go to [6]. Otherwise, go to [3]
to find new x and y and. If necessary, go to [2] to find more ai’s.

[6] Exit.

Example 3.4.1. Use Algorithm 3.4.1 to factor N = 1829.

[1] (Factor Base) Let the factor base be as follows:

FB = {−1, 2, 5, 7, 11}.

Note although 3 < 11 is a prime but for which N is not a quadratic
residue, so we exclude it from the factor base.

[2] (Smoothness) Choose ai ∼ b√1829c = 29. Let ai = 27, 28, 29, · · · , com-
pute Q(ai) = a2

i − N , keep only the smooth Q(ai), and get the corre-
sponding exponent vectors modulo 2 as follows:

-1 2 5 7 11

1) Q(27) = 272 −N = −1100 = −22 · 52 · 11 ←→ (1, 0, 0, 0, 1)
2) Q(38) = 382 −N = −385 = −5 · 7 · 11 ←→ (1, 0, 1, 1, 1)
3) Q(39) = 392 −N = −308 = −22 · 7 · 11 ←→ (1, 0, 0, 1, 1)
4) Q(43) = 432 −N = 20 = 22 · 5 ←→ (0, 1, 1, 0, 0)
5) Q(45) = 452 −N = 196 = 22 · 72 ←→ (0, 0, 0, 0, 0)
6) Q(52) = 522 −N = 875 = 53 · 7 ←→ (0, 0, 1 , 1, 0)
7) Q(53) = 532 −N = 980 = 22 · 5 · 72 ←→ (0, 0, 1, 0, 0)

100 3. Integer Factorization Attacks

[3] (Linear Algebra – Finding x2 ≡ y2 (mod N)) Use linear algebra to find
a subset of the numbers Q(ai) = a2

i −n whose product
∏

pαi
i is a square;

if the sum of the corresponding exponent vectors modulo 2 is zero, then
the subset of the numbers Q(ai) form a square. Observe that (this can
be done systematically) the sum of the first, the second and the sixth
vectors is zero. That is,

(1, 0, 0, 0, 1) 1st
(1, 0, 1, 1, 1) 2nd

⊕ (0, 0, 1, 1, 0) 6th

(0, 0, 0, 0, 0, 0) =⇒ Successful

So, we have found a suitable pair of (x, y), which produce squares in both
sides (27 · 38 · 52)2 ≡ (2 · 53 · 7 · 11)2. Thus, we have

x = 27 · 38 · 52
= 53352
≡ 311 (mod 1829)

y = 2 · 53 · 7 · 11
= 19250
≡ 960 (mod 1829).

Note that some other subsets of the number Q(ai) such as the 2nd, 3rd
and 7th also form a square:

(1, 0, 1, 1, 1) 2nd
(1, 0, 0, 1, 1) 3rd

⊕ (0, 0, 1, 0, 0) 7st

(0, 0, 0, 0, 0, 0) =⇒ Successful

That is, (38 · 39 · 53)2 ≡ (22 · 5 · 72 · 11)2. Thus,

x = 38 · 39 · 53
= 78546
≡ 1728 (mod 1829)

y = 22 · 5 · 72 · 11
= 10780
≡ 1635 (mod 1829).

[4] (Computing GCD) Compute (f, g) = gcd(x±y, N), and hopefully, (f, q)
will be the required prime factors (p, q) of N . Since we have found two
pairs of

(x, y) = (311, 960) = (1728, 1635).

3.4 Quadratic Sieve Attack 101

Thus we have

(f, g) = gcd(x± y, N) = gcd(311± 960, 1829) = (31, 59).

That is, 1829 = 31 · 59. Alternatively, we have

(f, g) = gcd(x± y, N) = gcd(1728± 1635, 1829) = (59, 31).

That is, 1829 = 59 · 31.

There are many tricks to enhance the performance of the basic QS. Among
these are the large and small prime variations and the use of a multiplier. But
by far the most important is the multiple polynomial variation, the Multiple
Polynomial Quadratic Sieve (MPQS). Different versions of MPQS have been
suggested, independently by Davis and Holdridge [94], and Montgomery [246],
with Montgomery’s slightly better.

In what follows, we shall introduce a version of the MPQS algorithm, due
to Riele et al [259]. The idea of the MPQS is as follows. To find the (x, y)
pair in

x2 ≡ y2 (mod N) (3.2)

we try to find triples (Ui, Vi,Wi), for i = 1, 2, · · · , such that

U2
i ≡ V 2

i Wi (mod N) (3.3)

where W is easy to factor (at least easier than N). If suffiently many con-
gruences (3.3) are found, they can be combined, by multiplying together a
subset of them, in order to get a relation of the form (3.2). The version of
the MPQS algorithm described here is based on [259].

Algorithm 3.4.2 (Multiple Polynomial Quadratic Sieve). Given a
positive integer N > 1, this algorithm will try to find a factor N using the
multiple polynomial quadratic sieve.

[1] Choose B and M , and compute the factor base FB.
Note: M is some fixed integer so that we can define: U(x) = a2x + b,
V = a and W (x) = a2x2 + 2bx + c, x ∈ [−M, M), such that a, b, c satisfy
the following relations:

a2 ≈
√

2N/M, b2 −N = a2c, |b| < (a2)/2. (3.4)

Note: Since the potential prime divisors p of a given quadratic polynomial
W (x) may be characterized as: if p | W (x), then

a2W (x) = (a2x + b)2 −N ≡ 0 (mod p). (3.5)

That is, the congruence t2 − N ≡ 0 (mod p) should be solvable. So, the
factor base FB (consisting of all primes less than a bound B) should be
chosen in such a way that t2 ≡ N (mod p) is solvable. There are L primes
pj , j = 1, 2, · · · , L in FB; this set of primes is fixed in the whole factoring
process.

102 3. Integer Factorization Attacks

[2] Generate a new quadratic polynomial W (x).
Note: The quadratic polynomial W (x) in

(U(x))2 ≡ V (x)W (x) (mod N) (3.6)

assumes extreme values in x = 0,±M such that |W (0)| ≈ |W (±M)| ≈
M

√
N/2. If M ¿ N , then W (x) ¿ N , thus W (x) is easier to factor than

N .

[3] Solve W (x) ≡ 0 (mod q) for all q = pe < B, for all primes p ∈ FB, and
save the solutions for each q.

[4] Initialize the sieving array SI[−M, M) to zero.

[5] Add log p to all elements SI(j), j ∈ [−M, M], for which W (j) ≡ 0 (mod
q), for all q = pe < B, and for all primes p ∈ PFB.
Note: Now we can collect those x ∈ [−M, M) for which W (x) is only
composed of prime factors < B.

[6] Selecting those j ∈ [−M, M) for which SI(j) is close to log(M/2
√

N/2).
[7] If the number of W (x)-values collected in Step 6 is < L + 2, then go to

Step 2 to construct a new polynomial W (x).
Note: If at least L + 2 completely factorized W -values have been collected,
then the (x, y)-pairs satisfying (3.2) may be found as follows. For xi, i =
1, 2, · · · , L + 2,

W (xi) = (−1)αi0

L∏

j=1

p
αij

j , i = 1, 2, · · · , L + 2. (3.7)

[8] Perform Gaussian elimination on the matrix of exponents (mod 2) of W (x).
Note: Associated with each W (xi), we define the vector αi as follows

αT
i = (αi0, αi1, · · · , αiL) (mod 2). (3.8)

Since we have more vectors αi (at least L + 2) than compoenets (L + 1),
there exists at least one subset S of the set {1, 2, · · · , L + 2} such that

∑

i∈S

αi ≡ 0 (mod 2),

so that ∏

i∈S

W (x) = Z2.

Hence, from (3.6) it follows that
[∏

i∈S

(a2xi + b)

]
≡ Z2

∏

i∈S

a2 (mod N)

which is of the required form x2 ≡ y2 (mod N).

3.5 Successful QS Attack 103

[9] Factor N .
Note: Now we can calculate gcd(x± y, N) to find the prime factors of N .

Conjecture 3.4.1 (The complexity of the QS/MPQS Method). If
N is the integer to be factored, then under certain reasonable heuristic
assumptions, the QS/MPQS method will factor N in time

O
(
exp

(
(1 + o(1))

√
log N log log N

))
= O

(
N (1+o(1))

√
log log N/ log N

)
.

The MPQS is however not the fastest factoring algorithm at present; the
fastest factoring algorithm in use today is the Number Field Sieve, which is
the subject matter of our next section.

3.5 Successful QS Attack

The most successful QS attack on RSA is the following challenge, proposed
by RSA but first appeared in Martin Gardner’s 1977 paper [115]:

9686 9613 7546 2206
1477 1409 2225 4355
8829 0575 9991 1245
7431 9874 6951 2093
0816 2982 2514 5708
3569 3147 6622 8839
8962 8013 3919 9055
1829 9451 5781 5154

A Ciphertext Challenge Worth $100

The text “THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE” was
the solution to the challenge. The idea behind this challenge is that it needs
to factor a 129-digit number, RSA-129 first (see Example 2.3.1). Rivest es-
timated in 1977 [115] that factoring a 125-digit number would require 40
quadrillion years using the best algorithm and fastest computer at that time;
he therefore then believed that RSA-129 could never be factored and hence
the above challenge could never be broken. What Rivest failed to take into
account was the possibility of progress in integer factorization. This section
gives a brief description of the successful attack on this challenge using QS.

Notice first that for

M ≡ Cd (mod N), d ≡ 1/e (mod φ(N))

C is the following number from the proposed challenge problem:

104 3. Integer Factorization Attacks

9686961375462206147714092225435588290575999112457431987469512093
0816298225145708356931476622883989628013391990551829945157815154

(e,N) are public with e = 9007 and N the following number:

1143816257578888676692357799761466120102182967212423625625618429
35706935245733897830597123563958705058989075147599290026879543541.

So, it is trivial to find M if the prime factorization of N = pq can be found
since φ(N) = (p − 1)(q − 1). In 1994, 13 years later, N was factored using
MPQS; more than 600 volunteers across America, Europe, Asia, and Aus-
tralia, contributed CPU time from about 1600 machines over 6 months. The
two prime factors are as follows:

3490529510847650949147849619903898133417764638493387843990820577,
32769132993266709549961988190834461413177642967992942539798288533.

Now, d = 1/e (mod (p− 1)(q − 1)) can be easily calculated as follows:

10669861436857802444286877132892015478070990663393786280122622449
6631063125911774470873340168597462306553968544513277109053606095.

Therefore, M ≡ Cd (mod N) can be easily calculated via

M ← 1
while d ≥ 1 do

if d mod 2 = 1
then M ← C ·M mod N

C ← C2 mod N
d ← bd/2c

print M (Now M ≡ Cd (mod N))

which gives the plaintext M :

20080500130107090300231518041900011805001917210501130919080015191
9090618010705.

In what follows, we show how to factor N using MPQS [15].

[1] (Sieving Step) Find a multiplier m such that mN is a quadratic residue
modulo many small primes. Then compute the factor base FB, consisting
−1 and all primes p ≤ B for which mN is a quadratic residue modulo p,
for some bound B. The main task in this step is to collect a set of relations
(integer tuples (v, q1, q2, (ep)p∈FB) such that

v2 ≡ q1 · q2 ·
∏

p∈FB

pep (mod N) (3.9)

where each qi is either 1 or a large prime in (B1, B2], for some large prime
bound B2. If q1 = q2 = 1 the relation is called full, if only of qi equals 1, it is
a partial, and a double partial otherwise. If the large primes match, the double

3.6 Number Field Sieve Attack 105

partial relations can be combined into cycles. The sieving step is complete
as soon as #full + #cycles > #FB. For RSA-129, m = 5, B1 = 16333609,
#FB = 51 + 219. It finally had 112011 fulls, 1431337 partial, 6881138
double and 457455 cycles, and led to 569466 aparse 542339-dimensional
vectors (ep)p∈FB.

[2] (Matrix Step) This step is to find linear dependencies modulo 2 among the
> FB bit-vectors (ep mod 2)p∈FB. Each dependency corresponds to a set
W = {(w, (ep)p∈FB) : w2 ≡ ∏

p∈FB pep mod N} for which
∑

W (ep)p∈FB =
(2wp)p∈FB for integers wp. Consequently, x ≡ ∏

W w mod N and y ≡∏
p∈FB pwp mod N satisfy x2 ≡ y2 mod N . It is interesting to note that

the first three dependencies led to N = 1 ·N . On 2 April 1994, the fourth
one led to the factorization N = pq, with p the 64-digit prime and q the
65-digit prime, as given above.

MPQS is a factoring method very well suited for integers about 130 digits.
For integers larger than 130 digits, a big gun will be needed, which is the
subject matter of the next section.

3.6 Number Field Sieve Attack

First let us present a useful lemma:

Lemma 3.6.1. Let f(x) is an irreducible monic polynomial of degree d over
integers and m an integer such that f(m) ≡ 0 (mod N). Let α be a complex
root of f(x) and Z[α] the set of all polynomials in α with integer coefficients.
Then there exists a unique mapping Φ : Z[α] 7→ Zn satisfying

(1) Φ(ab) = Φ(a)Φ(b), ∀a, b ∈ Z[α];
(2) Φ(a + b) = Φ(a) + Φ(b), ∀a, b ∈ Z[α];
(3) Φ(za) = zΦ(a), ∀a ∈ Z[α], z ∈ Z;
(4) Φ(1) = 1;
(5) Φ(α) = m (mod N).

Note first that there are two main types of NFS: GNFS (general NFS) and
SNFS (special NFS). As in RSA, the modulus N is chosen to be a general
number, not a number with a special form, we only consider GNFS here;
whenever NFS is mentioned, it it to mean GNFS, not SNFS. The basic idea
of Number Field Sieve (NFS) is then as follows.

[1] Find a monic irreducible polynomial f(x) of degree d in Z[x], and an integer
m such that f(m) ≡ 0 (mod N).

106 3. Integer Factorization Attacks

[2] Let α ∈ C be an algebraic number that is the root of f(x), and denote the
set of polynomials in α with integer coefficients as Z[α].

[3] Define the mapping (ring homomorphism): Φ : Z[α] 7→ Zn via Φ(α) = m
which ensures that for any f(x) ∈ Z[x], we have Φ(f(α)) ≡ f(m) (mod
N).

[4] Find a finite set U of coprime integers (a, b) such that

∏

(a,b)∈U

(a− bα) = β2,
∏

(a,b)∈U

(a− bm) = y2

for β ∈ Z[α] and y ∈ Z. Let x = Φ(β). Then

x2 ≡ Φ(β)Φ(β)

≡ Φ(β2)

≡ Φ

 ∏

(a,b)∈U

(a− bα)

≡
∏

(a,b)∈U

Φ(a− bα)

≡
∏

(a,b)∈U

(a− bm)

≡ y2 (mod N)

which is of the required form of the factoring congruence, and hopefully, a
factor of N can be found by calculating gcd(x± y, N).

There are many ways to implement the above idea, all of which fol-
low the same pattern as CFRAC and QS/MPQS: by a sieving process one
first tries to find congruences modulo N by working over a factor base, and
then do a Gaussian elimination over Z/2Z to obtain a congruence of squares
x2 ≡ y2 (mod N). We give in the following a brief description of the NFS
algorithm [221].

Algorithm 3.6.1. Given an odd positive integer N , the NFS algorithm has the
following four main steps in factoring N :

[1] (Polynomials Selection) Select two irreducible polynomials f(x) and g(x)
with small integer coefficients for which there exists an integer m such that

f(m) ≡ g(m) ≡ 0 (mod N) (3.10)

The polynomials should not have a common factor over Q.

3.6 Number Field Sieve Attack 107

[2] (Sieving) Let α be a complex root of f and β a complex root of g. Find
pairs (a, b) with gcd(a, b) = 1 such that the integral norms of a − bα and
a− bβ:

N(a− bα) = bdeg(f)f(a/b), N(a− bβ) = bdeg(g)g(a/b) (3.11)

are smooth with respect to a chosen factor base. (The principal ideals a−bα
and a−bβ factor into products of prime ideals in the number field Q(α) and
Q(β), respectively.)

[3] (Linear Algebra) Use techniques of linear algebra to find a set S of indices
such that the two products

∏

i∈S

(ai − biα),
∏

i∈S

(ai − biβ) (3.12)

are both squares of products of prime ideals.

[4] (Square root) Use the set S in (3.12) to find an algebraic numbers α′ ∈ Q(α)
and β′ ∈ Q(β) such that

(α′)2 =
∏

i∈S

(ai − biα), (β′)2 =
∏

i∈S

(ai − biβ) (3.13)

Define Φα : Q(α) → ZN and Φβ : Q(β) → ZN via Φα(α) = Φβ(β) = m, where
m is the common root of both f and g. Then

x2 ≡ Φα(α′)Φα(α′)

≡ Φα((α′)2)

≡ Φα

(∏

i∈U

(ai − biα)

)

≡
∏

i∈U

Φα(ai − biα)

≡
∏

i∈U

(ai − bim)

≡ Φβ(β′)2

≡ y2 (mod N)

which is of the required form of the factoring congruence, and hopefully, a factor
of N can be found by calculating gcd(x± y, N).

Example 3.6.1. Use NFS to factor N = 1098413. First notice that N =
1098413 = 12 · 453 + 173, which is in a special form and can be factored by
using SNFS.

108 3. Integer Factorization Attacks

[1] (Polynomials Selection) Select the two irreducible polynomials f(x) and
g(x) and the integer m as follows:

m =
17
45

f(x) = x3 + 12 =⇒ f(m) =
(

17
45

)3

+ 12 ≡ 0 (mod N)

g(x) = 45x− 17 =⇒ g(m) = 45
(

17
45

)3

− 17 ≡ 0 (mod N)

[2] (Sieving)

U = {(6, 1), (−3, 2), (7, 3), (−1, 3), (2, 5), (3, 8), (−9, 10)}.
Let α = 3

√−12 and β = 17
45 . Then

∏

U

(a− bα) = 7400772 + 1138236α− 10549α2

= (2694 + 213α− 38α2)2

= γ2

∏

U

(a− bβ) =
28 · 112 · 132 · 232

312 · 54

=
52624
18225

Since

Φα(γ) ≡ 5610203
2025

(mod N),

then
(

52624
18225

)2

≡
(

5610203
2025

)2

(mod N).

Thus,

gcd(52624 · 2025 + 5610203 · 18225, 1098413) = (563, 1951).

That is,
1098413 = 563 · 1951.

Conjecture 3.6.1 (Complexity of NFS). Under some reasonable heuris-
tic assumptions, the NFS method can factor an integer N in time

O
(
exp

(
(c + o(1)) 3

√
log N 3

√
(log log N)2

))
(3.14)

3.6 Number Field Sieve Attack 109

where c = (64/9)1/3 ≈ 1.922999427 if a general version of NFS, GNFS, is
used to factor an arbitrary integer N , whereas c = (32/9)1/3 ≈ 1.526285657
if a special version of NFS, SNFS, is used to factor a special form of integer
N .

Although the IFP problem is still far way from being solved, significant
progress has been made over the last 30 years or so, which can been seen
from Table 3.1 of the factorization records (starting from RSA-130, all
numbers are factored by Number Field Sieve). In Table 3.1, RSA-xxx

Year Digits Bits RSA-x (digits) RSA-y (bits) Prize
1964 20
1974 45
1984 71
1991 100 332 RSA-100
1992 110 365 RSA-110
1993 120 398 RSA-120
1994 129 428 RSA-129 $100
1996 130 431 RSA-130
1999 140 465 RSA-140
1999 155 512 RSA-155
2003 160 530 RSA-160
2003 174 576 RSA-576 $10,000

2005 (Nov) 200 663 RSA-663
2005 (May) 193 640 RSA-640 $20,000

? 212 704 RSA-704 $30,000
? 232 768 RSA-768 $50,000
? 270 896 RSA-896 $75,000
? 309 1024 RSA-1024 $100,000
? 463 1536 RSA-1536 $150,000
? 617 2048 RSA-2048 $200,000

Table 3.1. Large Number Factorization Records

(or RSA-yyy) represent the number of digits (or the number of bits) of
the RSA number. For example, the number RSA-212 has 212 digits (704 bits):
740375634795617128280467960974295731425931888892312890849362326389
727650340282662768919964196251178439958943305021275853701189680982
867331732731089309005525051168770632990723963807867100860969625379
34650563796359,
whereas RSA-1536 has 1536 bits (463 digits):
184769970321174147430683562020016440301854933866341017147178577491
065169671116124985933768430543574458561606154457179405222971773252
466096064694607124962372044202226975675668737842756238950876467844
093328515749657884341508847552829818672645133986336493190808467199
043187438128336350279547028265329780293491615581188104984490831954

110 3. Integer Factorization Attacks

500984839377522725705257859194499387007369575568843693381277961308
923039256969525326162082367649031603655137144791393234716956698806
9.

3.7 Chapter Notes and Further Reading

Various integer factoring attacks for RSA are discussed in this chapter. Pol-
lard’s p − 1 method [242] and Williams’ p + 1 method [329] are suitable for
attacks on RSA modulus N with p ± 1 has no large prime factors. Thus for
RSA to be resistant to the p±1 attacks, the prime factor p of N must satisfy
that p ± 1 have at least one large prime factor. Pollard’s ρ attack [243] and
H. Lenstra’s ECM attack [186] are only suited for attacks on RSA modulus
N with a small prime factor. Thus for RSA to be resistant to the ρ attack
and ECM attack, the two prime factors p and q of N should be about the
same size and cannot be one large and one small. The current most powerful
and general methods of factoring are the Quadratic Sieve [248] and Number
Field Sieve [187], with QS suitable for factoring a number less than 130 digits
and NFS for numbers bigger than 130 digits. The current factoring record of
NFS is the RSA-640, a number with 640 bits and 193 digits; it was factored
in May 2005, winning the $20,000 prize from RSA Data Security Inc. So, by
today’s computing technology, for RSA to be resistant to factoring attack,
its modulus N must be bigger than 200 digits. In 1990, Pomerance pointed
out in [247] that if one is factoring N so as to cryptanalyze the RSA cryp-
tosystem with modulus N , one might immediately go to QS, skipping ECM
completely. This viewpoint of 1990 must be changed now to if one is factoring
N so as to cryptanalyze the RSA cryptosystem with modulus N > 10130, one
might immediately go to NFS, skipping QS/MPQS completely. Of course, if
one could build up a practical quantum computer, one should directly go the
Shor’s quantum factoring algorithm [287], skipping all the classical factoring
algorithms, including NFS, completely.

4. Discrete Logarithm Attacks

Many cryptosystems could be broken if we can compute discrete log-
arithms quickly, that is, if we could solve the equation ax = b in a
large finite field.

Samuel S. Wagstaff, Jr.
Professor of Computer Science at Purdue University

4.1 Introduction

The problem of computing discrete logarithms is fundamental in computa-
tional number theory, computational algebra, and of great importance in
public-key cryptography

First of all, let us recall the Discrete Logarithm Problem (DLP):

DLP : {n ∈ Z+
>1, x, y, k ∈ Z+, y ≡ xk (mod n)} find−−−−−→ {k}.

As we already know DLP is computationally intractable and the security
of several well known cryptosystems, such as the Diffie-Hellman-Merkle key-
exchange scheme, the ElGammal systems and the US Government’s digital
signature standard/algorithm (DSS/DSA), is based on the intractability of
DLP. So, as for the factoring attack for RSA, the discrete logarithm attack
is also the most direct attack for all the DLP-based cryptographic systems.
It is interesting to note that the discrete logarithm attack is also the most
direct attack for the IFP-based cryptographic systems in general and the
RSA cryptographic system in particular. On the one hand, if the adversary
Eve has an efficient integer factorization algorithm, she can factor N = pq
in polynomial-time, and can compute d ≡ 1/e mod ((p − 1)(q − 1)) and
hence recover C ≡ Md (mod N). On the other hand, if Eve has an efficient
discrete logarithm algorithm, she can make her own plaintext M and use the
publically known information (e,N) to get her own ciphertext C for M , then

112 4. Discrete Logarithm Attacks

she can use her discrete logarithm algorithm to compute d ≡ logMe M (mod
N), that is,

{N, M, Me} find−−−−−→ {d}.
This is the same as to say that if one can solve the DLP problem in

polynomial-time, one can break the RSA system in polynomial-time:

DLP P=⇒ RSA.

Example 4.1.1. Let the public-key and the cipher-text be as follows (see
the RSA original paper [262]):

(e,N,C) = (17, 2773, 2258)

Find the corresponding M such that C ≡ Me (mod N). The most obvious
way to invert the encryption function M 7→ C is to find d by computing
d ≡ 1/e (mod φ(N)) so that M ≡ Cd (mod N), but to do so we need to
factor N . Now we claim that we can find d in a different way as follows:

[1] Choose a piece of any reasonable plain-text M with gcd(N, M) = 1, say
M = 2113 and do the following calculation:

C ≡ Me ≡ 211317 ≡ 340 (mod 2773).

[2] Compute d by taking the discrete logarithm M to the base C modulo
N :

d ≡ logC M ≡ log340 2113 ≡ 157 (mod 2773).

[3) Now we can decrypt the given cipher-text C = 2258 by using this d:

M ≡ Cd ≡ 2258157 ≡ 1225 (mod 2773).

[4] The result can be easily verified to be true, since

C ≡ Me ≡ 122517 ≡ 2258 (mod 2773).

Example 4.1.2. Let the public-key and the cipher-text be as follows

(e,N,C) = (7, 69056069, 19407420)

(see page 173 of [218]), find M such that C ≡ Me mod N). We perform the
following computations:

[1] Choose a piece of any reasonable plain-text M with gcd(N, M) = 1, say
M = 59135721 and do the following calculation:

C ≡ Me ≡ 591357217 ≡ 60711351 (mod 69056069).

4.1 Introduction 113

[2] Compute d by taking the discrete logarithm M to the based C modulo
N :

d ≡ logC M ≡ log60711351 59135721 ≡ 4931383 (mod 69056069).

[3] Also compute e by taking the discrete logarithm C to the based M
modulo N :

e ≡ logC M ≡ log59135721 60711351 ≡ 7 (mod 69056069).

[4] Decrypt the given cipher-text C = 19407420 by using the d:

M ≡ Cd ≡ 194074204931383 ≡ 7289258 (mod 69056069).

[5] Verify the result using e:

M ≡ Ce ≡ 72892587 ≡ 19407420 (mod 69056069).

Now everything this is done, and everything is correct.

Remark 4.1.1. It is very interesting to note that to find the C, one usually
needs to compute

d ≡ 1/e (mod φ(N))

in order to calculate C ≡ Md (mod N). What we have shown in Example
4.1.2 is that we can find d in an easy way using

d ≡ logC′ M
′ mod N

in which both M ′ and C ′ can be easily calculated. More importantly

[1] The d from M ′ and C ′ can be used to decode the C from M .
[2] The d from logC′ M

′ mod N may be different from the d from 1/e (mod
φ(N)), but they perform exactly the same job in decoding C as can be
seen as follows:

M ≡ 194074204931383 ≡ 7289258 (mod 69056069),

M ≡ 1940742039451063 ≡ 7289258 (mod 69056069).

[3] Our d from logC′ M
′ mod N is smaller than the d from 1/e (mod φ(N))

(we might call the d from 1/e (mod φ(N)) normal d); this is the suffi-
cient information for the famous RSA system may not be as secure as
it claimed; since, et least, we can try many possible d’s smaller than the
normal d.

114 4. Discrete Logarithm Attacks

Example 4.1.3. Let the public-key and the cipher-text be as follows

(e,N,C) = (3533, 11413, 5761)

(see page 168 of [311]), find M such that C ≡ Me mod N). From the
given public-key (e,N) = (3533, 11413), it is sufficient to get d ≡ 1/e ≡
6597 (mod φ(11413)), but we do not want to do so since we assume φ(N) is
hard. We rather do the following computations:

[1] Choose a piece of any reasonable plain-text M ′ with gcd(N, M ′) = 1,
say M ′ = 8611.

[2] Compute C ′ as follows:

C ′ ≡ M ′e ≡ 86113533 ≡ 3866 (mod 11413).

[3] Compute d′ as follows:

d′ ≡ logC′ M
′ ≡ log3866 8611 ≡ 997 (mod 11413).

If we wish, we can find the corresponding e′ by

e′ ≡ log′M C ≡ log8611 3866 ≡ 733 (mod 11413).

[4] Decrypt the given cipher-text C = 5761 by using the d′:

M ≡ Cd′ ≡ 5761997 ≡ 9726 (mod 11413).

C ≡ Me′ ≡ 9726733 ≡ 5761 (mod 11413).

According to Adleman in 1979, the Russian mathematician Bouniakowsky
developed a clever algorithm to solve the congruence ax ≡ b (mod n), with
the asymptotic complexity O(n) in 1870. Despite its long history, no efficient
algorithm has ever emerged for the discrete logarithm problem. It is believed
to be extremely hard, and harder than the integer factorization problem (IFP)
even in the average case. The best known algorithm for DLP at present, using
NFS and due to Gordon, requires an expected running time

O
(
exp

(
c(log n)1/3(log log n)2/3

))
.

There are essentially three different categories of algorithms in use for
computing discrete logarithms:

(1) Algorithms that work for arbitrary groups, that is, those that do
not exploit any specific properties of groups; Shanks’ baby-step giant-
step method, Pollard’s ρ-method (an analogue of Pollard’s ρ-factoring
method) and the λ-method (also known as wild and tame Kangaroos)
are in this category.

4.2 Baby-Step Giant-Step Attack 115

(2) Algorithms that work well in finite groups for which the order of the
groups has no large prime factors; more specifically, algorithms that work
for groups with smooth orders. A positive integer is called smooth if it has
no large prime factors; it is called y-smooth if it has no large prime factors
exceeding y. The well-known Silver–Pohlig–Hellman algorithm based on
the Chinese Remainder Theorem is in this category.

(3) Algorithms that exploit methods for representing group elements as
products of elements from a relatively small set (also making use of the
Chinese Remainder Theorem); the typical algorithms in this category are
Adleman’s index calculus algorithm and Gordon’s NFS algorithm.

In following sections, we shall introduce the basic ideas of each of these three
categories; more specifically, we shall introduce Shanks’ baby-step giant-step
algorithm, the Silver–Pohlig–Hellman algorithm, Adleman’s index calculus
algorithm as well as Gordon’s NFS algorithm for computing discrete loga-
rithms.

4.2 Baby-Step Giant-Step Attack

Let G be a finite cyclic group of order n, a a generator of G and b ∈ G. The
obvious algorithm for computing successive powers of a until b is found to
take O(n) group operations. For example, to compute x = log2 15 (mod 19),
we compute 2x mod 19 for x = 0, 1, 2, · · · , 19 − 1 until 2x mod 19 = 15 for
some x is found, that is:

x 0 1 2 3 4 5 6 7 8 9 10 11
ax 1 2 4 8 16 13 7 14 9 18 17 15

So log2 15 (mod 19) = 11. It is clear that when n is large, the algorithm is
inefficient. In this section, we introduce a type of square root algorithm, called
the baby-step giant-step algorithm, for taking discrete logarithms, which is
better than the above mentioned obvious algorithm. The algorithm, due to
Daniel Shanks (1917–1996), works on arbitrary groups.

Let m = b√n c. The baby-step giant-step algorithm is based on the
observation that if x = loga b, then we can uniquely write x = i + jm, where
0 ≤ i, j < m. For example, if 11 = log2 15 mod 19, then a = 2, b = 15, m = 5,
so we can write 11 = i + 5j for 0 ≤ i, j < m. Clearly here i = 1 and j = 2
so we have 11 = 1 + 5 · 2. Similarly, for 14 = log2 6 mod 19 we can write
14 = 4 + 5 · 2, for 17 = log2 10 mod 19 we can write 17 = 2 + 5 · 3, etc. The
following is a description of the algorithm:

116 4. Discrete Logarithm Attacks

Algorithm 4.2.1 (Shanks’ baby-step giant-step algorithm). This al-
gorithm computes the discrete logarithm x of y to the base a, modulo n, such
that y = ax (mod n):

[1] (Initialization) Computes s = b√n c.
[2] (Computing the baby step) Compute the first sequence (list), denoted by S,

of pairs (yar, r), r = 0, 1, 2, 3, · · · , s− 1:

S = {(y, 0), (ya, 1), (ya2, 2), (ya3, 3), · · · , (yas−1, s− 1) mod n} (4.1)

and sort S by yar, the first element of the pairs in S.

[3] (Computing the giant step) Compute the second sequence (list), denoted
by T , of pairs (ats, ts), t = 1, 2, 3, · · · , s:

T = {(as, 1), (a2s, 2), (a3s, 3), · · · , (as2
, s) mod n} (4.2)

and sort T by ats, the first element of the pairs in T .

[4] (Searching, comparing and computing) Search both lists S and T for a
match yar = ats with yar in S and ats in T , then compute x = ts− r. This
x is the required value of loga y (mod n).

This algorithm requires a table with O(m) entries (m = b√n c, where
n is the modulus). Using a sorting algorithm, we can sort both the lists S
and T in O(m log m) operations. Thus this gives an algorithm for computing
discrete logarithms that uses O(

√
n log n) time and space for O(

√
n) group

elements. Note that Shanks’ idea is originally for computing the order of a
group element g in the group G, but here we use his idea to compute discrete
logarithms. Note also that although this algorithm works on arbitrary groups,
if the order of a group is larger than 1040, it will be infeasible.

Example 4.2.1. Suppose we wish to compute the discrete logarithm

x = log2 6 mod 19

such that 6 = 2x mod 19. According to Algorithm 4.2.1, we perform the
following computations:

[1] y = 6, a = 2 and n = 19, s = b√19 c = 4.
[2] Computing the baby step:

S = {(y, 0), (ya, 1), (ya2, 2), (ya3, 3) mod 19}
= {(6, 0), (6 · 2, 1), (6 · 22, 2), (6 · 23, 3) mod 19}
= {(6, 0), (12, 1), (5, 2), (10, 3)}
= {(5, 2), (6, 0), (10, 3), (12, 1)}.

4.2 Baby-Step Giant-Step Attack 117

[3] Computing the giant step:

T = {(as, s), (a2s, 2s), (a3s, 3s), (a4s, 4s) mod 19}
= {(24, 4), (28, 8), (212, 12), (216, 16) mod 19}
= {(16, 4), (9, 8), (11, 12), (5, 16)}
= {(5, 16), (9, 8), (11, 12), (16, 4)}

[4] Matching and computing: The number 5 is the common value of the
first element in pairs of both lists S and T with r = 2 and st = 16, so
x = st− r = 16− 2 = 14. That is, log2 6 (mod 19) = 14, or equivalently,
214 (mod 19) = 6.

Example 4.2.2. Suppose we wish to find the discrete logarithm

x = log59 67 mod 113

such that 67 = 59x mod 113. Again by Algorithm 4.2.1, we have:

[1] y = 67, a = 59 and n = 113, s = b√113 c = 10.
[2] Computing the baby step:

S = {(y, 0), (ya, 1), (ya2, 2), (ya3, 3), · · · , (ya9, 9) mod 113}
= {(67, 0), (67 · 59, 1), (67 · 592, 2), (67 · 593, 3), (67 · 594, 4),

(67 · 595, 5), (67 · 596, 6), (67 · 597, 7), (67 · 598, 8),
(67 · 599, 9) mod 113}

= {(67, 0), (111, 1), (108, 2), (44, 3), (110, 4), (49, 5), (66, 6),
(52, 7), (17, 8), (99, 9)}

= {(17, 8), (44, 3), (49, 5), (52, 7), (66, 6), (67, 0), (99, 9),
(108, 2), (110, 4), (111, 1)}

[3] Computing the giant-step:

T = {(as, s), (a2s, ss), (a3s, 3s), · · · (a10s, 10s) mod 113}
= {(5910, 10), (592·10, 2 · 10), (593·10, 3 · 10), (594·10, 4 · 10),

(595·10, 5 · 10), (596·10, 6 · 10), (597·10, 7 · 10), (598·10, 8 · 10),
(599·10, 9 · 10) mod 113}

= {(72, 10), (99, 20), (9, 30), (83, 40), (100, 50), (81, 60),
(69, 70), (109, 80), (51, 90), (56, 100)}

= {(9, 30), (51, 90), (56, 100), (69, 70), (72, 10), (81, 60), (83, 40),
(99, 20), (100, 50), (109, 80)}

[4] Matching and computing: The number 99 is the common value of the
first element in pairs of both lists S and T with r = 9 and st = 20,
so x = st − r = 20 − 9 = 11. That is, log59 67 (mod 113) = 11, or
equivalently, 5911 (mod 113) = 67.

118 4. Discrete Logarithm Attacks

Shanks’ baby-step giant-step algorithm is a type of square root method
for computing discrete logarithms. In 1978 Pollard also gave two other types
of square root methods, namely the ρ-method and the λ-method for tak-
ing discrete logarithms. Pollard’s methods are probabilistic but remove the
necessity of precomputing the lists S and T , as with Shanks’ baby-step giant-
step method. Again, Pollard’s algorithm requires O(n) group operations and
hence is infeasible if the order of the group G is larger than 1040.

4.3 Silver–Pohlig–Hellman Attack

In 1978, Pohlig and Hellman proposed an important special algorithm, now
widely known as the Silver–Pohlig–Hellman algorithm for computing discrete
logarithms over GF(q) with O(

√
p) operations and a comparable amount of

storage, where p is the largest prime factor of q − 1. Pohlig and Hellman
showed that if

q − 1 =
k∏

i=1

pαi
i , (4.3)

where the pi are distinct primes and the αi are natural numbers, and if
r1, · · · , rk are any real numbers with 0 ≤ ri ≤ 1, then logarithms over GF(q)
can be computed in

O
(

k∑

i=1

(
log q + p1−ri

i (1 + log pri
i)

)
)

(4.4)

field operations, using

O
(

log q
k∑

i=1

(1 + pri
i)

)
(4.5)

bits of memory, provided that a precomputation requiring

O
(

k∑

i=1

pri
i log pri

i + log q

)
(4.6)

field operations is performed first. This algorithm is very efficient if q is
“smooth”, i.e., all the prime factors of q − 1 are small. We shall give a brief
description of the algorithm as follows:

4.3 Silver–Pohlig–Hellman Attack 119

Algorithm 4.3.1 (Silver–Pohlig–Hellman Algorithm). This algorithm
computes the discrete logarithm x = loga b mod q:

[1] Factor q − 1 into its prime factorization form:

q − 1 =
k∏

i=1

pα1
1 pα2

2 · · · pαk

k .

[2] Precompute the table rpi,j for a given field:

rpi,j = aj(q−1)/pi mod q, 0 ≤ j < pi. (4.7)

This only needs to be done once for any given field.

[3] Compute the discrete logarithm of b to the base a modulo q, i.e., compute
x = loga b mod q:
[3-1] Use an idea similar to that in the baby-step giant-step algorithm to find

the individual discrete logarithms x mod pαi
i : To compute x mod pαi

i ,
we consider the representation of this number to the base pi:

x mod pαi
i = x0 + x1pi + · · ·+ xαi−1p

αi−1
i , (4.8)

where 0 ≤ xn < pi − 1.
(a) To find x0, we compute b(q−1)/pi which equals rpi,j for some j,

and set x0 = j for which

b(q−1)/pi mod q = rpi,j .

This is possible because

b(q−1)/pi ≡ ax(q−1)/p ≡ ax0(q−1)/p mod q = rpi,x0

(b) To find x1, compute b1 = ba−x0 . If

b
(q−1)/p2

i
1 mod q = rpi,j

then set x1 = j. This is possible because

b
(q−1)/p2

i
1 ≡ a(x−x0)(q−1)/p2

i ≡ a(x1+x2pi+···)(q−1)/pi

≡ ax1(q−1)/p mod q = rpi,x1

(c) To obtain x2, consider the number b2 = ba−x0−x1pi and compute

b
(q−1)/p3

i
2 mod q.

The procedure is carried on inductively to find all x0, x1, · · · , xαi−1.

[3-2] Use the Chinese Remainder Theorem to find the unique value of x
from the congruences x mod pαi

i .

We now give an example of how the above algorithm works:

120 4. Discrete Logarithm Attacks

Example 4.3.1. Suppose we wish to compute the discrete logarithm
x = log2 62 mod 181. Now we have a = 2, b = 62 and q = 181 (2 is a
generator of F∗181). We follow the computation steps described in the above
algorithm:

[1] Factor q − 1 into its prime factorization form:

180 = 22 · 32 · 5.

[2] Use the following formula to precompute the table rpi,j for the given field
F∗181:

rpi,j = aj(q−1)/pi mod q, 0 ≤ j < pi.

This only needs to be done once for this field.
(a) Compute rp1,j = aj(q−1)/p1 mod q = 290j mod 181 for 0 ≤ j < p1 =

2:
r2,0 = 290·0 mod 181 = 1,

r2,1 = 290·1 mod 181 = 180.

(b) Compute rp2,j = aj(q−1)/p2 mod q = 260j mod 181 for 0 ≤ j < p2 =
3:

r3,0 = 260·0 mod 181 = 1,

r3,1 = 260·1 mod 181 = 48,

r3,2 = 260·2 mod 181 = 132.

(c) Compute rp3,j = aj(q−1)/p3 mod q = 236j mod 181 for 0 ≤ j < p3 =
5:

r5,0 = 236·0 mod 181 = 1,

r5,1 = 236·1 mod 181 = 59,

r5,2 = 236·2 mod 181 = 42,

r5,3 = 236·3 mod 181 = 125,

r5,4 = 236·4 mod 181 = 135.

Construct the rpi,j table as follows:

pi j
0 1 2 3 4

2 1 180
3 1 48 132
5 1 59 42 125 135

This table is manageable if all pi are small.
[3] Compute the discrete logarithm of 62 to the base 2 modulo 181, that is,

compute x = log2 62 mod 181. Here a = 2 and b = 62:

4.3 Silver–Pohlig–Hellman Attack 121

[3-1] Find the individual discrete logarithms x mod pαi
i using

x mod pαi
i = x0 + x1pi + · · ·+ xαi−1p

αi−1
i , 0 ≤ xn < pi − 1.

(a-1) Find the discrete logarithms x mod pα1
1 , i.e., x mod 22:

x mod 181 ⇐⇒ x mod 22 = x0 + 2x1.

(i) To find x0, we compute

b(q−1)/p1 mod q = 62180/2 mod 181 = 1 = rp1,j = r2,0

hence x0 = 0.
(ii) To find x1, compute first b1 = ba−x0 = b = 62, then compute

b
(q−1)/p2

1
1 mod q = 62180/4 mod 181 = 1 = rp1,j = r2,0

hence x1 = 0. So

x mod 22 = x0 + 2x1 =⇒ x mod 4 = 0.

(a-2) Find the discrete logarithms x mod pα2
2 , that is, x mod 32:

x mod 181 ⇐⇒ x mod 32 = x0 + 2x1.

(i) To find x0, we compute

b(q−1)/p2 mod q = 62180/3 mod 181 = 48 = rp2,j = r3,1

hence x0 = 1.
(ii) To find x1, compute first b1 = ba−x0 = 62 · 2−1 = 31, then

compute

b
(q−1)/p2

2
1 mod q = 31180/32

mod 181 = 1 = rp2,j = r3,0

hence x1 = 0. So

x mod 32 = x0 + 2x1 =⇒ x mod 9 = 1.

(a-3) Find the discrete logarithms x mod pα3
3 , that is, x mod 51:

x mod 181 ⇐⇒ x mod 51 = x0.

To find x0, we compute

b(q−1)/p3 mod q = 62180/5 mod 181 = 1 = rp3,j = r5,0

hence x0 = 0. So we conclude that

x mod 5 = x0 =⇒ x mod 5 = 0.

122 4. Discrete Logarithm Attacks

[3-2] Find the x in
x mod 181

such that

x mod 4 = 0,
x mod 9 = 1,
x mod 5 = 0.

To do this, we just use the Chinese Remainder Theorem to solve the
following system of congruences:

x ≡ 0 (mod 4)
x ≡ 1 (mod 9)
x ≡ 0 (mod 5)

The unique value of x for this system of congruences is x = 100.
(This can be easily done by using, for example, the Maple function
chrem([0, 1, 0], [4,9, 5]).) So the value of x in the congruence
x mod 181 is 100. Hence x = log2 62 = 100.

4.4 Index Calculus Attacks

In this section we discuss some subexponential-time index calculus algorithms
for DLP.

Algorithm 4.4.1 (Index calculus for DLP). This algorithm tries to find
an integer k such that

k ≡ logβ α (mod p) or α ≡ βk (mod p).

[1] Precomputation

[1-1] (Choose Factor Base) Select a factor base Γ , consisting of the first
m prime numbers,

Γ = {p1, p2, · · · , pm},
with pm ≤ B, the bound of the factor base.

[1-2] (Compute βe mod p) Randomly choose a set of exponent e ≤ p−2,
compute βe mod p, and factor it as a product of prime powers.

4.4 Index Calculus Attacks 123

[1-3] (Smoothness) Collect only those relations βe mod p that are
smooth with respect to B. That is,

βe mod p =
m∏

i=1

pi
ei , ei ≥ 0. (4.9)

When such relations exist, get

e ≡
m∑

j=1

ej logβ pj (mod p− 1). (4.10)

[1-4] (Repeat) Repeat [1-3] to find at least m such e in order to find m
relations as in (4.10) and solve logβ pj for j = 1, 2, · · · ,m.

[2] Compute k ≡ logβ α (mod p)

[2-1] For each e in (4.10), determine the value of logβ pj for j =
1, 2, · · · ,m by solving the m modular linear equations with unknown
logβ pj .

[2-2] (Compute αβr mod p) Randomly choose exponent r ≤ p − 2 and
compute αβr mod p.

[2-3] (Factor αβr mod p over Γ)

αβr mod p =
m∏

j=1

pj
ri , rj ≥ 0. (4.11)

If (4.11) is unsuccessful, go back to [2-2]. If it is successful, then

logβ α ≡ −r +
m∑

j=1

rj logβ pj . (4.12)

Example 4.4.1 (Index calculus for DLP). Find

x ≡ log22 4 (mod 3361)

such that
4 ≡ 22x (mod 3361).

[1] Precomputation

[1-1] (Choose Factor Base) Select a factor base Γ , consisting of the first
4 prime numbers,

Γ = {2, 3, 5, 7},
with p4 ≤ 7, the bound of the factor base.

[1-2] (Compute 22e mod 3361) Randomly choose a set of exponent e ≤
3359, compute 22e mod 3361, and factor it as a product of prime
powers.

124 4. Discrete Logarithm Attacks

2248 ≡ 25 · 32 (mod 3361)
22100 ≡ 26 · 7 (mod 3361)
22186 ≡ 29 · 5 (mod 3361)
222986 ≡ 23 · 3 · 52 (mod 3361)

[1-3] (Smoothness) The above four relations are smooth with respect to
B = 7. Thus

48 ≡ 5 log22 2 + 2 log22 3 (mod 3360)
100 ≡ 6 log22 2 + log22 7 (mod 3360)
186 ≡ 9 log22 2 + log22 5 (mod 3360)
2986 ≡ 3 log22 2 + log22 3 + 2 log22 5 (mod 3360)

[2] Compute k ≡ logβ α (mod p)

[2-1] Compute
log22 2 = 1100
log22 3 = 2314
log22 5 = 366
log22 7 = 220

[2-2] (Compute 4 · 22r mod p) Randomly choose exponent r = 754 ≤
3659 and compute 4 · 223659 mod 3361.

[2-3] (Factor 4 · 22754 mod 3361 over Γ)

4 · 22754 ≡ 2 · 32 · 5 · 7 (mod 3361). (4.13)

Thus,

log22 4 ≡ −754 + log22 2 + 2 log22 3 + log22 5 + log22 7 ≡ 2200.(4.14)

That is,
222200 ≡ 4 (mod 3361).

Example 4.4.2. Find k ≡ log11 7 (mod 29) such that βk ≡ 11 (mod 29).

[1] (Factor Base) Let the factor base Γ = {2, 3, 5}.
[2] (Compute and Factor βe mod p) Randomly choose e < p, compute and

factor βe mod p = 11e mod 29 as follows:

(1) 112 ≡ 5 (mod 29) (success)
(2) 113 ≡ 2 · 13 (mod 29) (fail)
(3) 115 ≡ 2 · 7 (mod 29) (fail)
(4) 116 ≡ 32 (mod 29) (success)
(5) 117 ≡ 23 · 3 (mod 29) (success)
(6) 119 ≡ 2 · 7 (mod 29) (success)

4.4 Index Calculus Attacks 125

[3] (Solve the systems of congruences for the quantities logβ pi)

(1) log11 5 ≡ 2 (mod 28)
(4) log11 3 ≡ 3 (mod 28)
(6) log11 2 ≡ 9 (mod 28)
(5) 2 · log11 2 + log11 3 ≡ 7 (mod 28)

log11 3 ≡ 17 (mod 28)

[4] (Compute and Factor αβe mod p) Randomly choose e < p, compute and
factor αβe mod p = 7 · 11e mod 29 as follows:

7 · 11 ≡ 19 (mod 29) (fail)
7 · 112 ≡ 2 · 3 (mod 29) (success)

Thus
log11 7 ≡ log11 2 + log11 3− 2 ≡ 24 (mod 28).

This is true since
1124 ≡ 7 (mod 29).

In what follows, we shall briefly introduce two subexponential algorithms
for taking discrete logarithms x = loga b mod q, namely Adleman’s index
calculus algorithm and Gordon’s number field sieve method.

In 1979, Adleman proposed a general purpose, subexponential algorithm
for taking discrete logarithms, called the index calculus method, with the
following expected running time:

O
(
exp

(
c
√

log q log log q
))

.

His algorithm can be briefly described as follows:

Algorithm 4.4.2 (Adleman’s Index calculus). This algorithm tries to
compute the discrete logarithm x = loga b mod q with input a, b, q, where a
and b are generators and q a prime:

[1] Factor q − 1 into its prime factorization form:

q − 1 = pα1
1 pα2

2 · · · pαk

k

[2] For each pαk

k | n carry out the following steps until ml is obtained:

– (Guessing and checking) Find ri, si such that ari mod q and basi mod q

are smooth with respect to the bound 2(log q log log q)1/2
.

– (Using Gaussian elimination) Check if over the finite field Zp
αl
l

, basi mod q

is dependent on
{ar1 mod q, · · · , ari mod q}.

If yes, calculate βj ’s such that

126 4. Discrete Logarithm Attacks

basi mod q ≡

i∑

j=1

βja
ri mod q

 mod pαl

l

then

ml =

i∑

j=1

βjrj

 mod pαl

l − si

[3] (Using the Chinese Remainder Theorem) Calculate and output x such that

x ≡ ml (mod pαl

l) , l = 1, 2, · · · k.

Note that the above algorithm can also be easily generalized to the case
where q is not a prime, or a or b are not generators.

For more than ten years after its invention, the above algorithm and
its variants were the fastest algorithms for computing discrete logarithms.
But the situation changed when Gordon in 1993 proposed an algorithm for
computing discrete logarithms in GF(p). Gordon’s algorithm is based on the
Number Field Sieve (NFS) for integer factorization, with the heuristic ex-
pected running time

O
(
exp

(
c(log p)1/3(log log p)2/3

))
,

the same as that used in factoring. The algorithm can be briefly described as
follows:

Algorithm 4.4.3 (Gordon’s NFS). This algorithm computes the discrete
logarithm x such that ax ≡ b (mod p) with input a, b, p, where a and b are
generators and p is prime:

[1] (Precomputation): Find the discrete logarithms of a factor base of small
rational primes, which must only be done once for a given p.

[2] (Compute individual logarithms): Find the logarithm for each b ∈ Fp by
finding the logarithms of a number of “medium-sized” primes.

[3] (Compute the final logarithm): Combine all the individual logarithms (by
using the Chinese Remainder Theorem) to find the logarithm of b.

Interested readers are referred to Gordon’s paper [127] for more detailed
information. Note also that Gordon, with co-author McCurley [126], discussed
some implementation issues of massively parallel computations of discrete
logarithms over F2n .

4.5 Xedni Calculus Attack 127

4.5 Xedni Calculus Attack

The xedni calculus was first proposed by Joseph Silverman in 1998 [293], and
analyzed in [156] [175] and [295]. It is called xedni calculus because it “stands
index calculus on its head”. The xedni calculus is a new method that might
be used to solve the ECDLP, although it has not yet been tested in practice.
It can be described as follows [293]:

[1] Choose points in E(Fp) and lift them to points in Z2.

[2] Choose a curve E(Q) containing the lift points; use Mestre’s method [210]
(in reverse) to make rank E(Q) small.

Whilst the index calculus works in reverse:

[1] Lift E/Fp to E(Q); use Mestre’s method to make rank E(Q) large.

[2] Choose points in E(Fp) and try to lift them to points in E(Q).

A brief description of the xedni algorithm is as follows (a completed descrip-
tion and justification of the algorithm can be found in [293]).

Algorithm 4.5.1 (Xedni calculus for the ECDLP). Let Fp be a finite
field with p elements (p prime), E/Fp an elliptic curve over Fp, say, given by

E : y2 + ap,1xy + ap,3y = x3 + ap,2x
2 + ap,4x + ap,6.

Np the number of points in E(Fp), S and T the two points in E(Fp). This
algorithm tries to find an integer k

k = logT S

such that
S = kT in E(Fp).

[1] Fix an integer 4 ≤ r ≤ 9 and an integer M which is a product of small
primes.

[2] Choose r points:

PM,i = [x
M ,i, yM,i, zM,i], 1 ≤ i ≤ r (4.15)

having integer coefficients and satisfying
– the first 4 points are [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1].
– For every prime l | M , the matrix B(PM,1, · · · , PM,r) has maximal rank

modulo l.
Further choose coefficients uM,1, · · · , uM,10 such that the points
PM,1, · · · , PM,r satisfy the congruence:

uM,1x
3 + uM,2x

2y + uM,3xy2 + uM,4y
3 + uM,5x

2z + uM,6xyz + uM,7y
2z

+uM,8xz2 + uM,9yz2 + uM,10z
3 ≡ 0 (mod M). (4.16)

128 4. Discrete Logarithm Attacks

[3] Choose r random pairs of integers (si, ti) satisfying 1 ≤ si, ti < Np, and
for each 1 ≤ i ≤ r, compute the point Pp,i = (xp,i, yp,i) defined by

Pp,i = siS − tiT in E(Fp). (4.17)

[4] Make a change of variables in P2 of the form

X ′

Y ′

Z ′

 =

a11 a12 a13

a21 a22 a23

a21 a32 a33

X
Y
Z

 (4.18)

so that the first four points become

Pp,1 = [1, 0, 0], Pp,2 = [0, 1, 0], Pp,3 = [0, 0, 1], Pp,4 = [1, 1, 1].

The equation for E will then have the form:

up,1x
3 + up,2x

2y + up,3xy2 + up,4y
3 + up,5x

2z + up,6xyz

+up,7y
2z + up,8xz2 + up,9yz2 + up,10z

3 = 0. (4.19)

[5] Use the Chinese Remainder Theorem to find integers u′1, · · · , u′10 satisfying

u′i ≡ up,i (mod p) and u′i ≡ uM,i (mod M) for all 1 ≤ i ≤ 10. (4.20)

[6] Lift the chosen points to P2(Q). That is, choose points

Pi = [xi, yi, zi], 1 ≤ i ≤ r, (4.21)

with integer coordinates satisfying

Pi ≡ Pp,i (mod p) and Pi ≡ PM,i (mod M) for all 1 ≤ i ≤ r. (4.22)

In particular, take P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1], P4 = [1, 1, 1].
[7] Let B = B(P1, · · · , Pr) be the matrix of cubic monomials defined earlier.

Consider the system of linear equations:

Bu = 0. (4.23)

Find a small integer solution u = [u1, · · · , u10] to (4.23) which has the
additional property

u ≡ [u′1, · · · , u′10] (mod Mp), (4.24)

where u′1, · · · , u′10 are the coefficients computed in Step [5]. Let Cu denote
the associated cubic curve:

Cu : u1x
3 + u2x

2y + u3xy2 + u4y
3 + u5x

2z + u6xyz

+u7y
2z + u8xz2 + u9yz2 + u10z

3 = 0. (4.25)

4.5 Xedni Calculus Attack 129

[8] Make a change of coordinates to put Cu into standard minimal Weierstrass
form with the point P1 = [1, 0, 0] the point at infinity, O. Write the resulting
equation as

Eu : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (4.26)

with a1, · · · , a6 ∈ Z, and let Q1, Q2, · · · , Qr denote the images of
P1, P2, · · · , Pr under this change of coordinates (so in particular, Q1 = O).
Let c4(u), c6(u), and ∆(u) be the usual quantities in [291] associated to
the equation (4.26).

[9] Check if the points Q1, Q2, · · · , Qr ∈ Eu(Q) are independent. If they are,
return to Step [2] or [3]. Otherwise compute a relation of dependence

n2Q2 + n3Q3 + · · ·+ nrQr = O, (4.27)

set
n1 = −n2 − n3 − · · · − nr, (4.28)

and continue with the next step.

[10] Compute

s =
r∑

i=1

nisi and t =
r∑

i=1

niti. (4.29)

If gcd(s,Np) > 1, return to Step [2] or [3]. Otherwise compute an inverse
ss′ ≡ 1 (mod Np). Then

logT S ≡ s′t (mod Np), (4.30)

and the ECDLP is solved.

As can be seen, the basic idea in the above algorithm is that we first
choose points P1, P2 · · · , Pr in E(Fp) and lift them to points Q1, Q2 · · · , Qr

having integer coordinates, then we choose an elliptic curve E(Q) that goes
through the points Q1, Q2 · · · , Qr, finally, check if the points Q1, Q2 · · · , Qr

are dependent. If they are, the ECDLP is almost solved. Thus, the goal of the
xedni calculus is to find an instance where an elliptic curve has smaller than
expected rank. Unfortunately, a set of points Q1, Q2 · · · , Qr as constructed
above will usually be independent. So, it will not work. To make it work,
a congruence method, due to Mestre [210], is used in reverse to produce
the lifted curve E having smaller than expected rank1. Again unfortunately,
Mestre’s method is based on some deep ideas and unproved conjectures in
analytic number theory and arithmetic algebraic geometry, it is not possible
for us at present to give even a rough estimate of the algorithm’s running time.
So, in reality we know nothing about the complexity of the xedni calculus.
We also do not know if the xedni calculus will be practically useful; it may
1 Mestre’s original method is to produce elliptic curves of large rank.

130 4. Discrete Logarithm Attacks

be completely useless from a practical point of view. Much needs to be done
before we can have a better understanding of the xedni calculus. As we know
the index calculus is probabilistic, subexponential-time algorithm applicable
for both the integer factorization problem (IFP) and the finite field discrete
logarithm problem (DLP). However, there is no known subexponential-time
algorithm for the elliptic curve discrete logarithm (ECDLP); whether or not
there exists a subexponential-time algorithm for ECDLP is an important
open problem in mathematics, cryptography and computer science.

In November 1997, Certicom, a computer security company in Waterloo,
Canada, introduced the Elliptic Curve Cryptosystem (ECC) Challenge, de-
veloped to increase industry understanding and appreciation for the difficulty
of ECDLP and to encourage and stimulate further research in the security
analysis of ECC. The challenge is to compute the ECC private keys from
the given list of ECC public keys and associated system parameters. It is
the type of problem facing an adversary who wishes to attack ECC. These
problems are defined on curves either over F2m or over Fp with p prime (see
Table 4.1 and Table 4.2. Also there are three levels of difficulties associated
to the curves: exercise level (with bits less than 109), rather easy level (with
bits in 109-131), and very hard level (with bits in 163-359).

Curve Field size Estimated number Prize Status
(in bits) of machine days in US dollars

ECC2-79 79 352 HAC & Maple V Dec 1997
ECC2-89 89 11278 HAC & Maple V Feb 1998

ECC2K-95 97 8637 5,000 May 1998
ECC2-97 97 180448 5,000 Sept 1999

ECC2K-108 109 1.3× 106 10,000 April 2000
ECC2-109 109 2.1× 107 10,000 April 2004

ECC2K-130 131 2.7× 109 20,000 ?
ECC2-131 131 6.6× 1010 20,000 ?
ECC2-163 163 2.9× 1015 30,000 ?

ECC2K-163 163 4.6× 1014 30,000 ?
ECC2-191 191 1.4× 1020 40,000 ?
ECC2-238 239 3.0× 1027 50,000 ?

ECC2K-238 239 1.3× 1026 50,000 ?
ECC2-353 359 1.4× 1045 100,000 ?

ECC2K-358 359 2.8× 1044 100,000 ?

Table 4.1. Elliptic Curves over F2m

Now let us take the random curve ECC2-79 over F279 in the Challenge as
an example:

m = 79
f = x79 +x9 + 1
seedE = D3E5D53A 4D696E67 68756151 757779B8 379AC409

4.5 Xedni Calculus Attack 131

Curve Field size Estimated number Prize Status
(in bits) of machine days in US dollars

ECCp-79 79 146 HAC & Maple V Dec 1997
ECCp-89 89 4360 HAC & Maple V Jan 1998
ECCp-97 97 71982 5,000 March 1998
ECCp-109 109 9× 107 10,000 Nov 2002
ECCp-131 131 2.3× 1010 20,000 ?
ECCp-163 163 2.3× 1015 30,000 ?
ECCp-191 191 4.8× 1019 40,000 ?
ECCp-239 239 1.4× 1027 50,000 ?
ECC2p-359 359 3.7× 1045 100,000 ?

Table 4.2. Elliptic Curves over Fp

a = 4A2E 38A8F66D 7F4C385F
b = 2C0B B31C6BEC C03D68A7
seedP = 50CBF1D9 5CA94D69 6E676875 615175F1 6A36A3B1
U_x = 5674 7BC3DDBF F399EF4B
U_y = 49FF 222B2065 008D3C2C
P_x = 30CB 127B63E4 2792F10F
P_y = 547B 2C88266B B04F713B
h = 02
n = 4000 00000045 31A2562B
seedQ = 4EC95934 D696E676 87561517 56D5D2A8 FCD02E68
V_x = 5B6E 06AFB573 C1CF2BF5
V_y = 69F9 74972600 1DB5B8D9
Q_x = 0020 2A9F0350 14497325
Q_y = 5175 A6485955 2F97C129

A brief explanation of the curve (format and notation, etc.) is as follows
(more detailed explanation on all other types of curves in the Challenger can
be found in the following website):

http://www.certicom.com/index.php?action=ecc,ecc challenge

[1] m = 79: m is the order of the finite field F279 .
[2] f(x) = x79 + x9 + 1: The reduction polynomial used to represent the

elements in F279 .
[3] seedE the seed used to generate the parameters (a, b).
[4] (a, b): the field elements used to define the elliptic curve

E : y2 = x3 + ax + b.

[5] seedP: the seed used to generate the base point P on E.
[6] (xp, yp): the x- and y-coordinates of the based point P .
[7] n: the order of the point P , with n prime.

132 4. Discrete Logarithm Attacks

[8] h: co-factor h (the number of points in E(F79
2) divided by n).

[9] seedQ: the seed used to generate the base point Q on E.
[10] (xq, yq): the x- and y-coordinates of the based point Q.
[11] Integers are represented in hexadecimal.
[12] Field elements are represented in hexadecimal.
[13] Seeds are used for generating random elliptic curves and random points

on curves.

For this particular example, the answer is

logp Q = 3AA068A09FIED21E2582

The result was obtained by using parallelized Pollard ρ-method with
1737410165381 iterations and 1767 distinguished points.

4.6 Chapter Notes and Further Reading

The problem of computing discrete logarithms (DLP) is fundamental in com-
putational number theory, computational algebra, and of great importance
in public-key cryptography and information security. Remarkably enough,
the DLP problem has much in common with the IFP problem. First of all,
they are both computationally intractable, with almost the same level of in-
tractability. As a rule of thumb, the complexity of factoring N with β digits
is almost the same as that of taking discrete logarithms modulo a prime p
with β− 10 digits. Secondly, the methods used for IFP are always applicable
to DLP, and sometimes even applicable to ECDLP (see Table 4.3 for more
information): Finally, IFP, DLP and ECDLP are all useful in the design and

IFP DLP ECDLP
Trial Divisions Baby-Step Giant-Step

Pollard’s ρ-method Pollard’s λ-method

CFRAC/MPQS Index Calculus

NFS NFS

Xedni Calculus Xedni Calculus Xedni Calculus

Quantum Algorithms Quantum Algorithms Quantum Algorithms

Table 4.3. Algorithms for IFP, DLP and ECDLP

4.6 Chapter Notes and Further Reading 133

implementation of many cryptographic systems, the security of such systems
are based on the intractability of these problems.

Although efficient algorithms still have not been found for IFP, DLP, and
ECDLP, a great progress has been made in recent years. Readers may consult
[86], [201], [232], [233], [249], [276] for more information of DLP, and [292],
[295], [293], [336], and [337] for ECDLP. Again, quantum computers and
quantum algorithms are very well suited for IFP, DLP and ECDLP, but the
(new) problem is that a practically useful quantum computer is not available
at present and may never be able to be built. Nevertheless, there are quantum
algorithms for IFP, DLP and ECDLP, which are the subject matters of our
next chapter.

5. Quantum Computing Attacks

The quest for efficiency in computational methods yields not only fast
algorithms, but also insights that leads to elegant, simple, and general
problem-solving methods.

Robert E. Tarjan
The 1986 Turing Award Recipient

5.1 Introduction

In the RSA cryptosystem, it is assumed that the cryptanalyst, Eve

(1) knows the public-key {e,N} with N = pq and also the ciphertext C,
(2) does not know any one piece of the trap-door information {p, q, φ(N), d},
(3) wants to know {M}.

That is,

{e,N,C ≡ Me (mod N)} Eve wants to find−−−−−−−−−−−−−−→ {M}.

Obviously, there are several ways to recover M from C (i.e., to break the
RSA system):

(1) Factor N to get {p, q} so as to compute

M ≡ C1/e (mod (p−1)(q−1)) (mod N).

(2) find φ(N) so as to compute

M ≡ C1/e (mod φ(N)) (mod N).

136 5. Quantum Computing Attacks

(3) Find order(a,N), the order of a random integer a ∈ [2, N − 2] modulo
N , then try to find

{p, q} = gcd(ar/2 ± 1, N) and M ≡ C1/e (mod (p−1)(q−1)) (mod N).

(4) Find order(C, N), the order of C modulo N , so as to compute

M ≡ C1/e (mod order(C,N)) (mod N).

(5) Compute logC M (mod N), the discrete logarithm M to the base C
modulo N in order to find

M ≡ C logC M (mod N) (mod N)

Remarkably enough, all the above five operations can be efficiently performed
by quantum algorithms on quantum computers, and as discussed in the pre-
vious two chapters, cannot be efficiently performed by classical algorithms
on electronic computers. Incidently, all these operations are intimately con-
nected to the order-finding problem which can be done in polynomial-time
on a quantum computer. More specifically, using the quantum order finding
algorithm (see Figure 5.1), RSA can be cracked completely in polynomial-

Break RSA

Quantum

Intefer Factoring

Algorithm

Discrete Logarithm

Quantum

Algorithm

Algorithm

Order Finding

Quantum

Figure 5.1. Quantum Attacks on RSA

5.2 Order Finding Problem 137

time on a quantum computer, and the IFP, DLP, ECDLP problems can also
be performed in polynomial-time on a quantum computer. In this chapter,
we first introduce a quantum order find algorithm and a quantum ordering
based attack, then in the two sections that follows, we discuss the quantum
algorithms for integer factoring and quantum discrete logarithms and their
attacks to RSA.

5.2 Order Finding Problem

Definition 5.2.1. Let G = Z∗N be a finite multiplicative group, and x ∈ G
a randomly chosen integer (element). Then order of x in G, or order of an
element a modulo N , some times denoted by order(x,N), is the smallest
positive integer r such that

xr ≡ 1 (mod N).

Example 5.2.1. Let 5 ∈ Z∗104. Then order(5, 104) = 4, since 4 is the smallest
positive integer satisfying

54 ≡ 1 (mod 104).

Theorem 5.2.1. Let G be a finite group and suppose that x ∈ G has finite
order r. If xk = 1, then r | k.

Example 5.2.2. Let 5 ∈ Z∗104. As 524 ≡ 1 (mod 104), so, 4 | 24.

Definition 5.2.2. Let G be a finite group, then the number of elements in
G, denoted by |G|, is called the order of G.

Example 5.2.3. Let G = Z∗104. Then there are 48 elements in G that are
relatively prime to 104 (two numbers a and b are relatively prime if gcd(a, b) =
1), namely;

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43
45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 67, 69, 71, 73, 75, 77, 79, 81
83, 85, 87, 89, 93, 95, 97, 99, 101, 103

Thus, |G| = 48. That is, the order of the group G is 48.

Theorem 5.2.2 (Lagrange). Let G be a finite group. Then the order of an
element x ∈ G divides the order of the group G.

Example 5.2.4. Let G = Z∗104. Then the order of G is 48, whereas the order
of the element 5 ∈ G is 4. Clearly 4 | 24.

138 5. Quantum Computing Attacks

Corollary 5.2.1. If a finite group G has order r, then xr = 1 for all x ∈ G.

Example 5.2.5. Let G = Z∗104 and |G| = 48. Then

148 ≡ 1 (mod 104)
348 ≡ 1 (mod 104)
548 ≡ 1 (mod 104)
748 ≡ 1 (mod 104)

...
10148 ≡ 1 (mod 104)
10348 ≡ 1 (mod 104).

Now, we are in a position to present our two main theorems as follows.

Theorem 5.2.3. Let C be the RSA ciphertext, and order(C, N) the order
of C ∈ Z∗N . Then

d ≡ 1/e (mod order(C, N)).

Corollary 5.2.2. Let C be the RSA ciphertext, and order(C, N) the order
of C ∈ Z∗N . Then

M ≡ C1/e (mod order(C,N)) (mod N)

Thus, to recover the RSA M from C, it suffices to just find the order of
C modulo N .

Now we return to the actual computation of the order of an element
x in G = Z∗N . Finding the order of an element x in G is, in theory, not a
problem: just keep multiplying until we get to “1”, the identity element of the
multiplicative group G. For example, let N = 179359, x = 3 ∈ G, and G =
Z∗179359, such that gcd(3, 179359) = 1. To find the order r = order(3, 179359),
we just keep multiplying until we get to “1”:

31 mod 179359 = 3
32 mod 179359 = 9
33 mod 179359 = 27

...

31000 mod 179359 = 31981
31001 mod 179359 = 95943
31002 mod 179359 = 108470

...

314716 mod 179359 = 99644
314717 mod 179359 = 119573
314718 mod 179359 = 1.

5.3 Quantum Order Finding Attack 139

Thus, the order r of 3 in the multiplicative group G = (Z/179359Z)∗ is 14718,
that is, ord179359(3) = 14718.

Example 5.2.6. Let

N = 5515596313
e = 1757316971
C = 763222127
r = order(C, N) = 114905160

Then

M ≡ C1/e mod r (mod N)
≡ 7632221271/1757316971 mod 114905160 (mod 5515596313)
≡ 1612050119

Clearly, this result is correct, since

Me ≡ 16120501191757316971

≡ 763222127
≡ C (mod 5515596313)

It must be noted, however, that in practice, the above computation for
finding the order of x ∈ (Z/NZ)∗ may not work, since for an element x in a
large group G with N having more than 200 digits, the computation of r may
require more than 10150 multiplications. Even if these multiplications could
be carried out at the rate of 1000 billion per second on a supercomputer,
it would take approximately 3 · 1080 years to arrive at the answer. Thus,
the order finding problem is intractable on conventional digital computers.
The problem is, however, tractable on quantum computers, provided that a
practical quantum computer is available.

5.3 Quantum Order Finding Attack

It may be the case that, as the famous physicist Feynman mentioned, nobody
understands quantum mechanics, some progress has been made in quantum
mechanics, particularly in quantum computing and quantum cryptography.
In this section, we present a quantum algorithm for computing the order of an
element x in the multiplicative group Z∗N , due to Shor [287]. The main idea of
Shor’s algorithm is as follows. First of all, we create two quantum registers for
our quantum computer: Register-1 and Register-2. Of course, we can create
just one single quantum memory register partitioned into two parts. Secondly,

140 5. Quantum Computing Attacks

we create in Register-1, a superposition of the integers a = 0, 1, 2, 3, · · · which
will be the arguments of f(a) = xa (mod N), and load Register-2 with all
zeros. Thirdly, we compute in Register-2, f(a) = xa (mod N) for each input
a. (Since the values of a are kept in Register-1, this can be done reversibly).
Fourthly, we perform the discrete Fourier transform on Register-1. Finally we
observe both registers of the machine and find the order r that satisfies xr ≡
1 (mod N). The following is a brief description of the quantum algorithm
for the order finding problem.

Algorithm 5.3.1 (Quantum Order Finding Attack). Given RSA ci-
phertext C and modulus N , this attack will first find the order, r, of C in Z8

N ,
such that Cr ≡ 1 (mod N), then recover the plaintext M from the ciphertext
C. Assume the quantum computer has two quantum registers: Register-1 and
Register-2, which hold integers in binary form.

[1] (Initialization) Find a number q, a power of 2, say 2t, with N2 < q < 2N2.

[2] (Preparation for quantum registers) Put in the first t-qubit register, Register-
1, the uniform superposition of states representing numbers a (mod q), and
load Register-2 with all zeros. This leaves the machine in the state |Ψ1〉:

|Ψ1〉 =
1√
q

q−1∑
a=0

| a〉 | 0〉 .

(Note that the joint state of both registers are represented by |Register-1〉
and |Register-2〉). What this step does is put each qubit in Register-1 into
the superposition

1√
2

(| 0〉+ | 1〉) .

[3] (Power Creation) Fill in the second t-qubit register, Register-2, with powers
Ca (mod N). This leaves the machine in state |Ψ2〉:

|Ψ2〉 =
1√
q

q−1∑
a=0

| a〉 |Ca (mod N)〉 .

This step can be done reversibly since all the a’s were kept in Register-1.

[4] (Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each
state | a〉 to

1√
q

q−1∑
c=0

exp(2πiac/q) | c〉 .

That is, we apply the unitary matrix with the (a, c) entry equal to
1√
q exp(2πiac/q). This leaves the machine in the state |Ψ3〉:

5.3 Quantum Order Finding Attack 141

|Ψ3〉 =
1
q

q−1∑
a=0

q−1∑
c=0

exp(2πiac/q) | c〉 |xa (mod N)〉 .

[5] (Periodicity Detection in xa) Observe both | c〉 in Register-1 and
|xa (mod N)〉 in Register-2 of the machine, measure both arguments of
this superposition, obtaining the values of | c〉 in the first argument and
some

∣∣ xk (mod n)
〉

as the answer for the second one (0 < k < r).

[6] (Extract r) Extract the required value of r. Given the pure state |Ψ3〉, the
probabilities of different results for this measurement will be given by the
probability distribution:

Prob(c, Ck (mod N)) =

∣∣∣∣∣∣∣
1
q

q−1∑
a=0

Ca≡ak (mod N)

exp(2πiac/q)

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
1
q

b(q−k−1)/rc∑

B=0

exp(2πi(br + k)c/q)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
1
q

b(q−k−1)/rc∑

B=0

exp(2πib{rc}/q)

∣∣∣∣∣∣

2

where {rc} is rc mod N . As shown in [287],

−r

2
≤ {rc} ≤ −r

2
=⇒ −r

2
≤ rc− dq ≤ −r

2
, for some d

=⇒ Prob(c, Ck (mod N)) >
1

3r2
.

then we have
∣∣∣∣
c

q
− d

r

∣∣∣∣ ≤
1
2q

.

Since c
q were known, r can be obtained by the continued fraction expansion

of c
q .

[7] (Code Breaking) Once the order r, r = order(C, N), is found, then compute:

M ≡ C1/e mod r (mod N).

Hence, decodes the RSA code C.

Theorem 5.3.1. (Complexity of Quantum Order Finding Attack).
Quantum order attack can find order(C, N) and recover M from C in time
O((log N)2+ε).

142 5. Quantum Computing Attacks

Remark 5.3.1. This quantum attack is for particular RSA ciphertexts C.
In this special case, The factorization of the RSA modulus N is not needed.
In the next section, we shall consider the more general quantum attack by
factoring N .

5.4 Quantum Integer Factorization Attack

Instead of finding the order of C in Z∗N , one can take this further to a more
general case: find the order of an element x in Z∗N , denoted by order(x,N),
where N is the RSA modulus. Once the order of an element x in Z∗N is
found, and it is even, it will have a good chance to factor N , of course in
polynomial-time, by just calculating

{
gcd(xr/2 + 1, N), gcd(xr/2 − 1, N)

}
.

For instance, for x = 3, r = 14718 and N = 179359, we have
{

gcd(314718/2 + 1, 179359), gcd(314718/2 − 1, 179359)
}

= (67, 2677),

and hence the factorization of N :

N = 179359 = 67 · 2677.

The following theorem shows that the probability for r to work is high.

Theorem 5.4.1. Let the odd integer N > 1 have exactly k distinct prime
factors. For a randomly chosen x ∈ Z∗N with multiplicative order r, the
probability that r is even and that

xr/2 6≡ −1 (mod N)

is least 1− 1/2k−1. More specifically, if N has just two prime factors (this is
often the case for the RSA modulus N), then the probability is at least 1/2.

Algorithm 5.4.1 (Quantum Algorithm for Integer Factorization).
Given integers x and N , the algorithm will

– find the order of x, i.e., the smallest positive integer r such that

xr ≡ 1 (mod N),

– find the prime factors of N and compute the decryption exponent d,
– decode the RSA message.

5.4 Quantum Integer Factorization Attack 143

Assume the machine has two quantum registers: Register-1 and Register-2, which
hold integers in binary form.

[1] (Initialization) Find a number q, a power of 2, say 2t, with N2 < q < 2N2.

[2] (Preparation for quantum registers) Put in the first t-qubit register, Register-
1, the uniform superposition of states representing numbers a (mod q), and
load Register-2 with all zeros. This leaves the machine in the state |Ψ1〉:

|Ψ1〉 =
1√
q

q−1∑
a=0

| a〉 | 0〉 .

(Note that the joint state of both registers are represented by |Register-1〉
and |Register-2〉). What this step does is put each qubit in Register-1 into
the superposition

1√
2

(| 0〉+ | 1〉) .

[3] (Base Selection) Choose a random x ∈ [2, N − 2] such that gcd(x,N) = 1.

[4] (Power Creation) Fill in the second t-qubit register, Register-2, with powers
xa (mod N). This leaves the machine in state |Ψ2〉:

|Ψ2〉 =
1√
q

q−1∑
a=0

| a〉 |xa (mod N)〉 .

This step can be done reversibly since all the a’s were kept in Register-1.

[5] (Perform a quantum FFT) Apply FFT on Register-1. The FFT maps each
state | a〉 to

1√
q

q−1∑
c=0

exp(2πiac/q) | c〉 .

That is, we apply the unitary matrix with the (a, c) entry equal to
1√
q exp(2πiac/q). This leaves the machine in the state |Ψ3〉:

|Ψ3〉 =
1
q

q−1∑
a=0

q−1∑
c=0

exp(2πiac/q) | c〉 |xa (mod N)〉 .

[6] (Periodicity Detection in xa) Observe both | c〉 in Register-1 and
|xa (mod N)〉 in Register-2 of the machine, measure both arguments of
this superposition, obtaining the values of | c〉 in the first argument and
some

∣∣ xk (mod n)
〉

as the answer for the second one (0 < k < r).

144 5. Quantum Computing Attacks

[7] (Extract r) Extract the required value of r. Given the pure state |Ψ3〉, the
probabilities of different results for this measurement will be given by the
probability distribution:

Prob(c, xk (mod N)) =

∣∣∣∣∣∣∣
1
q

q−1∑
a=0

xa≡ak (mod N)

exp(2πiac/q)

∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
1
q

b(q−k−1)/rc∑

B=0

exp(2πi(br + k)c/q)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
1
q

b(q−k−1)/rc∑

B=0

exp(2πib{rc}/q)

∣∣∣∣∣∣

2

where {rc} is rc mod N . As showed in [287],

−r

2
≤ {rc} ≤ −r

2
=⇒ −r

2
≤ rc− dq ≤ −r

2
, for some d

=⇒ Prob(c, xk (mod N)) >
1

3r2
.

then we have
∣∣∣∣
c

q
− d

r

∣∣∣∣ ≤
1
2q

.

Since c
q were known, r can be obtained by the continued fraction expansion

of c
q .

[8] (Resolution) If r is odd, go to Step [3] to start a new base. If r is even, then
try to compute Once r is found, the factors of N can be possibly

{gcd(xr/2 − 1, N), gcd(xr/2 + 1, N)}
Hopefully, this will produce two factors of N .

[9] (Computing d) Once N is factored and p and q are found, then compute

d ≡ 1/e (mod (p− 1)(q − 1)).

[10] (Code Break) As soon as d is found, and RSA ciphertext encrypted by the
public-key (e,N), can be decrypted by this d as follows:

M ≡ Cd (mod N).

Theorem 5.4.2 (Complexity of Quantum Factoring). Quantum fac-
toring algorithm can factor the RSA modulus N and break the RSA system
in time O((log N)2+ε).

5.4 Quantum Integer Factorization Attack 145

Remark 5.4.1. The attack discussed in Algorithm 5.4.1 is more general
than that in Algorithm 5.3.1. Algorithm 5.4.1 also implies that if a practical
quantum computer can be built, then the RSA cryptosystem can be com-
pletely broken, and a quantum resistent cryptosystem must be developed
and used to replace the RSA cryptosystem.

Example 5.4.1. On 19 December 2001, IBM made the first demonstration
of the quantum factoring algorithm [317], that correctly identified 3 and 5 as
the factors of 15. Although the answer may appear to be trivial, it may have
good potential and practical implication. In this example, we show how to
factor 15 quantum-mechanically [229].

[1] Choose at random x = 7 such that gcd(x,N) = 1. We aim to find
r = order157 such that 7r ≡ 1 (mod 15).

[2] Initialize two four-qubit registers to state 0:

|Ψ0〉 = | 0〉 | 0〉 .

[3] Randomize the first register as follows:

|Ψ0〉 → |Ψ1〉 =
1√
2t

2t−1∑

k=0

| k〉 | 0〉 .

[4] Unitarily compute the function f(a) ≡ 13a (mod 15) as follows:

|Ψ1〉 → |Ψ2〉 =
1√
2t

2t−1∑

k=0

| k〉 ∣∣ 13k (mod 15)
〉

=
1√
2t

[| 0〉 | 1〉+ | 1〉 | 7〉+ | 2〉 | 4〉+ | 3〉 | 13〉+

| 4〉 | 1〉+ | 5〉 | 7〉+ | 6〉 | 4〉+ | 7〉 | 13〉+
| 8〉 | 1〉+ | 9〉 | 7〉+ | 10〉 | 4〉+ | 11〉 | 13〉+
+ · · ·]

[5] We now apply the FFT to the second register and measure it (it can be
done in the first), obtaining a random result from 1, 7, 4, 13. Suppose we
incidently get 4, then the state input to FFT would be

√
4
2t

[| 2〉+ | 6〉+ | 10〉+ | 14〉+ · · ·] .

After applying FFT, some state
∑

λ

αλ |λ〉

146 5. Quantum Computing Attacks

with the probability distribution for q = 2t = 2048 (see [229]). The
final measurement gives 0, 512, 1024, 2048, each with probability almost
exactly 1/4. Suppose λ = 1536 was obtained from the measurement.
Then we compute the continued fraction expansion

λ

q
=

1536
2048

=
1

1 + 1
3

, with convergents
[
0, 1,

3
4
,

]

Thus, r = 4 = order15(7). Therefore,

gcd(xr/2 ± 1, N) = gcd(72 ± 1, 15) = (5, 3).

Remark 5.4.2. Quantum factoring is still in its very earlier stage and will
not threaten the security of RSA at least at present, as the current quantum
computer can only factor a number with only 2 digits such as 15 which is
essentially hopeless.

5.5 Quantum Discrete Logarithm Attack

Quantum algorithms can not only factor large integers in polynomial-time,
but also take discrete logarithms in polynomial-time. In this section, we give a
brief description of a quantum algorithm for solving the DLP in polynomial-
time (provided that there is a practical quantum computer); with some mod-
ification, the algorithm can be used to solve the Elliptic Curve Discrete Log-
arithm (ECDLP).

Algorithm 5.5.1 (Quantum algorithm for discrete logarithms).
Given g, x ∈ N and p prime. This algorithm will find the integer r such that
gr ≡ x (mod p) if r exists. It uses three quantum registers.

[1] Find q a power of 2 such that q is close to p, that is, p < q < 2p.

[2] Put in the first two registers of the quantum computer the uniform super-
position of all | a〉 and | b〉 (mod p − 1), and compute gax−b (mod p) in
the third register. This leaves the quantum computer in the state |Ψ1〉:

|Ψ1〉 =
1

p− 1

p−2∑
a=0

p−2∑

b=0

∣∣ a, b, gax−b (mod p)
〉
. (5.1)

5.5 Quantum Discrete Logarithm Attack 147

[3] Use the Fourier transform Aq to map | a〉 → | c〉 and | b〉 → | d〉 with
probability amplitude

1
q

exp
(

2πi

q
(ac + bd)

)
.

Thus, the state | a, b〉 will be changed to the state:

1
q

q−1∑
c=0

q−1∑

d=0

exp
(

2πi

q
(ac + bd)

)
| c, d〉 . (5.2)

This leaves the machine in the state |Ψ2〉:

|Ψ2〉 =
1

(p− 1)q

p−2∑

a,b=0

q−1∑

c,d=0

exp
(

2πi

q
(ac + bd)

) ∣∣ c, d, gax−b (mod p)
〉
.

(5.3)

[4] Observe the state of the quantum computer and extract the required infor-
mation. The probability of observing a state

∣∣ c, d, gk (mod p)
〉

is

∣∣∣∣∣∣
1

(p− 1)q

∑

a,b

exp
(

2πi

q
(ac + bd)

)∣∣∣∣∣∣

2

(5.4)

where the sum is over all (a, b) such that

a− rb ≡ k (mod p− 1). (5.5)

The better outputs (observed states) we get, the more chance of deducing
r we will have; readers are referred to [288] for a justification.

Remark 5.5.1. The quantum discrete logarithm algorithm is an extension
of the quantum factoring algorithms. It is noted that the the quantum discrete
logarithm algorithm can also be extended to solve the Elliptic Curve Discrete
Logarithm (ECDLP). Thus, if a practical quantum computer becomes avail-
able, then essentially all the currently used public-key cryptosystems based
on IFP, DLP and ECDLP will not be secure. However, as we mentioned ear-
lier, a practical quantum computer may never be able to built, at least at
present or in the next 30 years. Thus RSA should be secure for at least 30
years.

148 5. Quantum Computing Attacks

5.6 Chapter Notes and Further Reading

Quantum algorithms seem very well suited for attacking all those cryptosys-
tems whose security is based on the integer factorization problem (IFP), the
discrete logarithm problem (DLP), and the elliptic curve discrete logarithm
problem (ECDLP). Unfortunately, the security of most of the widely used
cryptosystems are based, one way or another, on these three types of in-
tractable number-theoretic problems. So if a practical quantum computer
can be built, all the IFP-based, DLP-based, and ECDLP-based cryptosys-
tems will become useless, and as a consequence, we have to replace them
with some quantum resistance cryptosystems. Fortunately (from a crypto-
graphic point of view but unfortunately from a computer science point of
view), practical computers may never be built or at least may need a very
long time before they can be developed. Thus, all the IFP, DLP, and ECDLP
based cryptosystems will remain to be useful for some time. Particularly, for
RSA, it may still be useful for another 30 years, making its possible total life
for about 60 years.

There are many good comprehensive references on quantum computa-
tion (particularly on quantum factoring which we are interested in) such
as [130], [200], [229], [239], and [333]. Shor’s original paper on quantum al-
gorithms for factoring and discrete logarithms may be found in ([288]. The
experimental realization of Shor’s quantum factoring algorithm using nuclear
magnetic resonance at IBM Almaden Research Center in California for fac-
toring 15 = 3 ·5 is reported in a Nature paper [317]. Other interesting papers
on quantum computing/factoring in the most prestigious journal Science and
Nature include [28], [119], and [68]. Feynman’s original idea about quantum
computers can be found in [111] and [112]. The quantum algorithm for the
elliptic curve discrete logarithm problem may be found in [250]. An elemen-
tary algorithmic description of quantum factoring/computing can be found
in the textbook [92] whereas a more number-theoretic oriented description of
quantum factoring/computing can be found in [335].

6. Simple Elementary Attacks

There is always more spirit in attack than in defence.

Titus Livius (59 BC–17 AD)
Roman Author and Historian

6.1 Introduction

The previous three chapters have been mainly concerned with the direct al-
gorithmic attacks, both classical or quantum-mechanical, on the RSA modu-
lus N , namely integer factorization attacks, discrete logarithm attacks, and
quantum mechanical attacks. It is interesting to note that most successful
attacks on RSA, however, are not based on factoring the modulus N and
do not result from the use of insufficiently large N . Rather, they exploit the
mathematical weakness of the RSA algorithm or the improper use of the RSA
system, such as common modulus, and lower exponents, etc. These attacks
are called the indirect algorithmic attacks. Some non-algorithmic attacks on
RSA also exist; they exploit specific hardware implementation issues of the
RSA algorithm/system; nothing to do with the inherent weakness of the algo-
rithm/system itself. For example, by carefully measuring the power consump-
tion or timing of a cryptographic device (e.g., a smartcard or a computer)
it takes on performing a particular cryptographic algorithm, it is possible to
extract the secret-key of the cryptographic device. These attacks are called
side-channel attacks. In the rest of the book, we shall concentrate on the
indirect algorithmic attacks and the side-channel attacks.

The strategies of attacks and anti-attacks (defenses) of an encryption is
the same as that of missiles and anti-missiles of the military weapons. From
a cryptanalytic point of view, it would be nice to find some unaware weak
points of a cryptographic system so that the system can be broken. From

150 6. Simple Elementary Attacks

a cryptographic point of view, however, it would be nice to design a conve-
nient, efficient and unconditionally unbreakable cryptographic system. Unfor-
tunately, it is very difficult to satisfy both. On the one hand, unconditionally
unbreakable cryptographic systems, such as the One-Time Pads (OTPs) are
indeed possible, but are largely impractical and hence not so useful, due to
the cost, inefficiency and the too frequently changing of the keys. On the other
hand, the conditional unbreakable cryptographic systems, such as RSA, are
practical, efficient, convenient, but it is a risk to use such cryptosystems,
since their security is based on some unproven conjectures such as the RSA
conjecture, and since there may exist some unaware weaknesses and unaware
attacks on the systems that may have been kept a secret and may have never
been reported and disclosed to the public-it is well possible! In this chapter
we shall study some simple but indirect elementary (and of course known)
mathematical/algorithmic attacks on the RSA system.

6.2 Guessing Plaintext Attacks

Our first type of simple elementary algorithmic attacks is concerned with
the attacks on guessing the values of the plaintexts M . Suppose (e,N,C) is
given, and the cryptanalyst, Eve, wishes to find M . That is,

{e,N,C ≡ Me (mod N)} find−−−−−−−→
guessing M

{M}.

If the plaintext space M = {M1,M2, · · · ,Mk} is small or predicable,
Eve can decrypt C by simply encrypting all possible plaintext messages
M1,M2, · · · ,Mk to get C ′1, C

′
2, · · · , C ′k, and check, at each step, if C ′i = C.

If yes, then M = Mi, the plaintext M is found. This simple process can be
described as follows:

C ′1 ≡ (M1)e (mod N), if C ′1 = C, then M = M1,

C ′2 ≡ (M2)e (mod N), if C ′2 = C, then M = M2,

...
...

C ′k ≡ (Mk)e (mod N), if C ′1 = C, then M = Mk.

This attack is known as forward search attack, or guessing plaintext attack.
The attack will be impractical if the message space M is large. So to prevent
such an attack, the message space M is necessarily very large.

A closely related attack to the forward search attack is the short plaintext
attack. If the plaintext message M is small although the corresponding C can

6.3 Blinding Attack on RSA Signatures 151

be as big as N (this is the general case for public-key cryptography as it is
usually only used to encrypt short massages particularly the encryption keys
used for secret-key cryptographic systems such as DES and AES [315]), then
the cryptanalyst can perform two sequences of the operations as follows:

U ≡ Cx−e (mod N), for all 1 ≤ x ≤ 199

V ≡ ye (mod N), for all 1 ≤ y ≤ 199

If for some of the pair (x, y), we have U = V , then C ≡ (xy)e (mod N).
Thus M = xy. This attack is much more efficient than the forward attack
that would try all 1017 possible values of M , because it only needs to perform
2× 109 computations and to compare the elements in the two sequences up
to 109 times.

The above two attacks can be easily prevented by a salting process (i.e.,
appending some random digits to the plaintext message M prior to encryp-
tion), or by a padding process (i.e., adjoin some random digits to the beginning
and the end of the plaintext message M prior to encryption) such as the one
discussed in [22], so that a large random plaintext M can be formed; these
randomly added digits can be simply removed after decryption.

6.3 Blinding Attack on RSA Signatures

Our second type of simple elementary algorithmic attacks is on RSA signa-
tures. Suppose (e,N,M) is given, and the cryptanalyst, Eve, wishes to find
the digital signature S. That is,

{e,N,M ≡ Se (mod N)} find−−−−−−→
forging S

{S}. (6.1)

As the RSA function enjoys certain kind of self-reducibility [264], which, on
the one hand is good (as it provides assurance that all random ciphertexts
are equally hard to decrypt) but on the other hand is bad (as it provides an
avenue for an attacker, Eve, to gain information about the decryption of one
ciphertext from the decryption of other ciphertexts). The following attack,
called the blinding attack [37] is based, unfortunately, on this self-reducibility
and can be used to obtain someone’s valid digital signature.

Let (e,N) and (d,N) be Bob’s public and secret keys, respectively. Sup-
pose the cryptanalyst, Eve, wants to know Bob’s signature S on a message
M ∈ Z∗N , which is computed by:

S ≡ Md (mod N).

Then Eve can try the following:

152 6. Simple Elementary Attacks

[1] Eve picks up a random number r ∈ Z∗N , and computes M ′ ≡ reM (mod
N).

[2] Even asks Bob to sign the random message (looks like a hashed value,
as it usually should be) M ′.

[3] Suppose Bob is willing to sign the message M ′, which means that Eve
can get

S′ ≡ (M ′)d (mod N).

[4] Now it is plain for Eve to get Bob’s valid signature S as follows:

S ≡ S′/r (mod N),

which is so because

Se ≡ (S′/r)e

≡ (S′)e/re

≡ ((M ′)d)e/re

≡ M ′/re

≡ (reM)/re

≡ M (mod N).

Thus, Eve can forge Bob’s valid signature without knowing his private expo-
nent d, and Bob will not detect the forgery since M ≡ Se (mod N), as we
have just showed.

Again, this chosen plaintext attack can be avoided by using random
padding techniques. Note that the random padding techniques are also coun-
termeasures against the following chosen-ciphertext attack [269]. Suppose the
cryptanalyst, Eve, intercepts a ciphertext C from Bob to Alice. Then Eve
chooses at random a positive integer r, computes M̃ ≡ C · re (mod N)
and sends it to Alice. Alice then decrypts the ciphertext C̃ ≡ M̃e ≡
Cd · r (mod N). Suppose now Eve can get this C̃, then she can get the
original plaintext M by computing

M ≡ r−1Cd · r (mod N).

6.4 Guessing φ(N) Attack

If one can guess the value of φ(N), one can recover the RSA plaintext M
from its corresponding ciphertext C in polynomial-time. That is,

6.4 Guessing φ(N) Attack 153

φ(N) P=⇒ {M}. (6.2)

First of all, we show that the computation of φ(N) and the factorization of
N , IFP(N), are deterministic polynomial-time equivalent.

Theorem 6.4.1. (The equivalence of φ(N) and IFP(N))

φ(N) P⇐⇒ IFP(N). (6.3)

Proof. Note first that if (N, φ(N)) is known and N is assumed to be the
product of two primes p and q, then N can be easily factored. Assume

N = pq,

then
φ(N) = (p− 1)(q − 1),

thus

pq − p− q + 1− φ(N) = 0 (6.4)

substituting q = n/p into (6.4) gives

p2 − (N − φ(N) + 1)p + N = 0. (6.5)

Let A = N − φ(N) + 1, then

(p, q) =
A±√A2 − 4N

2

will be the two roots of (6.5), and hence, the two prime factors of N .
On the other hand, if the two prime factors p and q of N are known, then

φ(N) = (p− 1)(q − 1) immediately from

φ(N) = N
k∏

i=1

pαi
i

if

N =
k∏

i=1

pi.

2

What this theorem says is that if an enemy cryptanalyst could compute
φ(N) then he could break RSA by computing d as the multiplicative inverse
of e modulo φ(N). That is, d ≡ 1/e (mod φ(N)). On the other hand, the
knowledge of φ(N) can lead to an easy way of factoring N , since

154 6. Simple Elementary Attacks

p + q = n− φ(N) + 1,

(p− q)2 = (p + q)2 − 4n,

p =
(p + q) + (p− q)

2
,

q =
(p + q)− (p− q)

2
.

In other words, computing φ(N) is no easier than factoring N .

Example 6.4.1. Let

N = 74153950911911911.

Suppose the cryptanalyst knows by guessing, interception or whatever that

φ(N) = 74153950339832712.

Then

A = N − φ(N) + 1
= 74153950911911911− 74153950339832712 + 1
= 572079200

Thus
p2 − 572079200p + 74153950911911911 = 0.

Solving this equation gives the two roots

{p, q} = {198491317, 373587883},

and hence the complete prime factorization of N

N = 74153950911911911
= 198491317 · 373587883.

Theorem 6.4.2. The RSA encryption is breakable in polynomial-time if the
cryptanalyst knows φ(N). That is,

φ(N) P=⇒ RSA(M). (6.6)

Proof. If φ(N) is known, then d ≡ 1/e (mod φ(N)), hence recovers M from
C: M ≡ Cd (mod N). 2

Thus, we have:

IFP(N) P⇐⇒ φ(N) P=⇒ RSA(M). (6.7)

6.5 Guessing d Attack 155

Thus, breaking the RSA encryption by computing φ(N) is no easier than
breaking the RSA encryption by factoring N . However, if someone can intel-
ligently and efficiently guess/find the value of φ(N), or someone has already
known φ(N) by some means, then he can break RSA completely without
factoring.

6.5 Guessing d Attack

If N is large and d is chosen from a large set, then a cryptanalyst should
not be able to determine d any easier than he can factor N . We first observe
that factoring N is deterministic polynomial-time equivalent to computing
the RSA private exponent d. That is,

IFP(N) P⇐⇒ {d},

or

IFP(N) P⇐⇒ RSA(d).

Theorem 6.5.1. If the prime factorization of the RSA modulus N is known,
then d can be calculated in polynomial-time. That is,

IFP(N) P=⇒ {d}. (6.8)

Proof. If N = pq is known, then

d ≡ 1/e (mod (p− 1)(q − 1))

since e is also known. As the modular inverse 1/e can be done in polynomial-
time by the extended Euclid’s algorithm, d can be calculated in polynomial-
time.
2

Now we show that given the RSA private exponent d, the prime factor-
ization of N can be done in polynomial time.

Theorem 6.5.2 (Coron and May [85]). Let N = pq with p and q prime
numbers. Let also e and d be the public and private exponent, respectively,
satisfying ed ≡ 1 (mod φ(N)).

(1) If p and q are with the same bit size and 1 < ed ≤ N3/2, then given
(N, e, d), the prime factorization of N can be computed deterministically
in time O((log N)2).

156 6. Simple Elementary Attacks

(2) If p and q are with the same bit size and 1 < ed ≤ N2, then given
(N, e, d), the prime factorization of N can be computed deterministically
in time O((log N)9).

(3) Let β and 0 < δ ≤ 1/2 be real numbers such that 2βδ(1 − δ) ≤ 1. Let
N = pq with p and q primes such that p < N δ and q < 2N1−δ. Let
1 < ed ≤ Nβ . Then given (N, e, d), the prime factorization of N can be
computed deterministically in time O((log N)9).

Proof. The results follow by applying Coppersmith’s technique [78] of find-
ing small solutions to the univariable modular polynomial equations using
lattice reduction [188]. For more details, see [85]. 2

Corollary 6.5.1. If d is known, then the prime factorization N can be found
in deterministic polynomial-time. That is,

{d} P=⇒ IFP(N). (6.9)

Combining Theorem 6.5.1 and Corollary 6.5.1, we have

Theorem 6.5.3 (The equivalence of RSA(d) and IFP(N)).
Computing the private exponent d by giving the prime factorization
N and computing the prime factorization of N by giving the private
exponent d are deterministic polynomial-time equivalent. That is,

{d} P⇐⇒ IFP(N). (6.10)

Remark 6.5.1. It was known, as soon as the RSA cryptographic system
was designed in 1977, that if the RSA private exponent d is given, then
the prime factorization of the RSA modulus N can be computed in random
polynomial-time by using Miller’s techniques developned in 1976 [212]. That
is,

{d} RP=⇒ IFP(N). (6.11)

The proof is proceed as follows. First note that

ed ≡ 1 (mod φ(N)).

then
ed = tφ(N) + 1, t ∈ Z.

Pick up at random x ∈ Z6=0, this is guaranteed to satisfy

xed−1 ≡ 1 (mod N).

Then computing y1 of 1 modulo N yields:

y1 ≡
√

xed−1 ≡ x(ed−1)/2 (mod N).

6.5 Guessing d Attack 157

Therefore,
y2
1 − 1 ≡ 0 (mod N).

Thus, N can be factorized by computing

gcd(y1 ± 1, N).

But this will only work when y1 6≡ ±1 (mod N). Suppose we are unlucky and
obtain y1 ≡ ±1 (mod N) rather than a factor of N . If y1 ≡ −1 (mod N), we
return to the beginning and pick up another integer x. If y1 ≡ 1 (mod N),
we take another square root of one via

y2 ≡ √
y1

≡ x(ed−1)/4 (mod N).

Hence,
y2
2 − 1 ≡ 0 (mod N).

Computing
gcd(y2 ± 1, N).

Again, this will give a factor of N unless

y2 ≡ ±1 (mod N).

If we are unlucky, repeat the above process again (and again) until we have
either factorized N or found 2 - (ed − 1)/2s for some s ∈ Z. Clearly,
the above process can be done in random polynomial-time. On the other
hand, if IFP(N) is known then one can easily and deterministically find d in
polynomial-time just by computing d ≡ 1/e (mod (p− 1)(q − 1)).

Finally, we show that if the prime factorization of the RSA modulus N is
known, the RSA plaintext M can be computed in polynomial-time from the
corresponding ciphertext C.

Theorem 6.5.4. If the prime factorization of the RSA modulus N is known,
then RSA can be broken in polynomial-time. That is,

IFP(N) P=⇒ M. (6.12)

Proof. By Theorem 6.5.1, if the prime factorization of N is known, then
d can be calculated in polynomial-time. Once d is found, then the following
decryption process

M ≡ Cd (mod N),

can be done in polynomial-time, as (C, N) is known. 2

This is the same as to say that computing d from the public-key (e,N) is
as hard as factoring the modulus N .

158 6. Simple Elementary Attacks

Example 6.5.1. Let

e = 17579,
N = 63978486879527143858831415041,
d = 10663687727232084624328285019.

We wish to find the prime factors p and q of N from the secret-key d. We
follow the procedure given in the proof of Theorem 6.5.1. Let x = 2 and
perform the following computations:

for i from 2 to 100 do
si := (e ∗ d− 1)/i
yi := 2t

i mod N
print(i, si, yi, gcd(yi − 1, N))
end do

We find that only those numbers when i = 13, 26, 39, 52, 65, 78, 81, 91 for
i ≤ 100 are lucky and give rise to yi 6≡ 1 (mod N) and hence each leads to
the complete prime factorization of N = 145295143558111·440334654777631:

s13 = (ed− 1)/13 = 14419766658231755047005147873000
y13 ≡ xs13 (mod N) = 8844029226054068856172959205
gcd(y13 − 1, N) = 440334654777631

s26 = (ed− 1)/26 = 7209883329115877523502573936500
y26 ≡ xs26 (mod N) = 2759802260459053691546680286
gcd(y13 − 1, N) = 440334654777631

s39 = (ed− 1)/39 = 4806588886077251682335049291000
y39 ≡ xs39 (mod N) = 14087419621751444280492087156
gcd(y39 − 1, N) = 440334654777631

s52 = (ed− 1)/52 = 3604941664557938761751286968250
y52 ≡ xs52 (mod N) = 33661945935813861391560228598
gcd(y52 − 1, N) = 440334654777631

s65 = (ed− 1)/65 = 2883953331646351009401029574600
y65 ≡ xs65 (mod N) = 59017354193359494219779573422
gcd(y65 − 1, N) = 440334654777631

s78 = (ed− 1)/78 = 2403294443038625841167524645500
y78 ≡ xs78 (mod N) = 9564171122158182570859195332
gcd(y78 − 1, N) = 440334654777631

6.6 eth Root Attack 159

s81 = (ed− 1)/81 = 2314283537740898958161320029000
y81 ≡ xs81 (mod N) = 35590500523696621176391909559
gcd(y81 − 1, N) = 145295143558111

s91 = (ed− 1)/91 = 2059966665461679292429306839000
y91 ≡ xs91 (mod N) = 42591321163720779552095944636
gcd(y91 − 1, N) = 440334654777631

The unlucky values of i in the range give rise to either yi ≡ 1 (mod N)
or si 6∈ Z.

Thus, to avoid the guessing d attack, N must be large, and d should be
chosen from a large set such that the cryptanalyst cannot easily choose the
correct d from the large set.

6.6 eth Root Attack

The RSA encryption works as follows:

C ≡ Me (mod N). (6.13)

Thus, the most straightforward attack on the RSA encryption would be tak-
ing the eth root of the ciphertext C modulo N :

M ≡ e
√

C (mod N). (6.14)

So, to break the RSA encryption it suffices to solve the Root Find Problem
(RFP) defined in (6.14). Clearly, if the eth root of C is given, M can be
computed in polynomial-time. That is,

RFP(C) P=⇒ {M}, (6.15)

or

RFP(C) P=⇒ RSA(M). (6.16)

It is evident that in (6.13), once 〈N, e, C〉 is given, we could try to substitute
the values for M = 0, 1, 2, · · · until a correct M is found. In theory, it is
possible to enumerate all elements of Z∗N , since Z∗N is a finite set, but in
practice, it is impossible when N is large. However, if φ(N) is known, then
we can compute the eth root of C modulo N fairly easily, in polynomial-time.

160 6. Simple Elementary Attacks

Theorem 6.6.1.

φ(N) P=⇒ RFP(C). (6.17)

Proof. Note that in RSA,

C ≡ Me (mod N), M ≡ Md (mod N), ed ≡ 1 (mod φ(N)).

If φ(N) is known, then the positive integers d and k in the equation

ed− kφ(N) = 1, k ∈ Z
can be determined by the extended Euclid’s algorithm which runs in
polynomial-time. Now use the value of d to get

M ≡ Cd (mod N)

which is then the required value for e
√

C mod N , since

Me ≡ (Cd)e

≡ Ced

≡ C1+kφ(N)

≡ C · Cφ(N)

≡ C (mod N).

Example 6.6.1. Let C ≡ M131 (mod 1073), find M such that

M ≡ 131
√

758 (mod 1073).

or equivalently,
M131 ≡ 758 (mod 1073).

Assume φ(1073) = 1008 is known. Then we can solve the linear Diophantine
equation in d and k:

131d− 1008k = 1.

Since 131/1008 can be expanded as a finite continued fraction

131
1008

= 0 +
1

7 +
1

2 +
1

3 +
1

1 +
1

1 +
1

1 +
1
3

= [0, 7, 2, 3, 1, 1, 1, 1, 3]

6.7 Common Modulus Attack 161

with convergents:
[
0,

1
7
,
1
8
,

3
23

,
10
77

,
13
100

,
23
177

,
36
277

,
131
1008

]

then

d = (−1)n−1qn−1 = (−1)8−1 · 277 = −277

k = (−1)n−1pn−1 = (−1)8−1 · 36 = −36,

satisfying
131(−277)− 1008(−36) = 1.

Now compute

M ≡ (M131)d

≡ 758−277

≡ 1/758277

≡ 1/875

≡ 905 (mod 1073).

However, to find φ(N), the only efficient way we know of is factoring
N . Thus, breaking the RSA encryption by computing e

√
C mod N , assuming

φ(N) is known, is no easier than breaking the encryption by factoring N .

Theorem 6.6.2.

IFP(N) P⇐⇒ φ(N) P=⇒ RFP(C) P=⇒ M. (6.18)

As we mentioned earlier, it is conjectured that any method of breaking the
RSA cryptosystem must be as difficult as factoring, but this has never been
proved or disproved, it may well be possible to break RSA without factoring,
particularly when the public exponent e is small.

6.7 Common Modulus Attack

The four RSA parameters {d, p, q, φ(N)} form the RSA trap-door. These
four pieces of information are equally important. Knowledge of any one of
them reveals the knowledge of the remaining three, and hence break the
RSA encryption completely. If RSA is not used properly, however, it may
well be possible to break the RSA encryption without use of any knowledge
of {d, p, q, φ(N)}. One such improper use is the use of common modulus N

162 6. Simple Elementary Attacks

in RSA encryption. Suppose that Bob sends Alice two ciphertexts C1 and C2

as follows:

C1 ≡ Me1 (mod N)
C2 ≡ Me2 (mod N)

where gcd(e1, e2) = 1. Then as the following theorem shows, Eve can recover
the plaintext M without factoring N or without using any of the trap-door
information {d, p, q, φ(N)}.
Theorem 6.7.1. Let N1 = N2 and M1 = M2 but e1 6= e2 and gcd(e1, e2) =
1 such that

C1 ≡ Me1 (mod N)
C2 ≡ Me2 (mod N)

Then M can be recovered easily; that is,

{[C1, e1, N], [C2, e2, N]} P=⇒ {M} (6.19)

Proof. Since gcd(e1, e2) = 1, then e1x + e2y = 1 with x, y ∈ Z, which
can be done by the extended Euclid’s algorithm (or the equivalent continued
fraction algorithm) in polynomial-time. Thus,

Cx
1 Cy

2 ≡ (Me1
1)x(Me2

2)y

≡ Me1x+e2y

≡ M (mod N)

2

Example 6.7.1. Let

e1 = 9007,

e2 = 65537,

M = 19050321180920251905182209030519.

N = 114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541

Then

6.7 Common Modulus Attack 163

C1 ≡ Me1 mod N

≡ 10420225094119623841363838260797412577444908472492959
12574337458892652977717171824130246429380783519790899
45343407464161377977212

C2 ≡ Me2 mod N

≡ 76452750729188700180719970517544574710944757317909896
04134098748828557319028078348030908497802156339649075
9750600519496071304348

Now we determine x and y in

9007x + 65537y = 1.

First, we get the continued fraction expansion of 9007/65537 as follows:

9007/65537 = [0, 7, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 7].

Then we get the convergents of the continued fraction of 9007/65537 as fol-
lows:
[
0,

1
7
,

3
22

,
4
29

,
7
51

,
11
80

,
18
131

,
29
211

,
76
553

,
105
764

,
181
1317

,
286
2081

,
467
3398

,
1220
8877

,
9007
65537

]

Thus,
{

x = (−1)n−1qn−1 = (−1)138877 = −8877,
y = (−1)npn−1 = (−1)141220 = 1220.

Therefore,

M ≡ Cx
1 Cy

2

≡ 10420225094119623841363838260797412577444908472492959
12574337458892652977717171824130246429380783519790899
45343407464161377977212−8877 ·
76452750729188700180719970517544574710944757317909896
04134098748828557319028078348030908497802156339649075
97506005194960713043481220

≡ 19050321180920251905182209030519 (mod N)

So, we can recover the plaintext M without factoring N and/or using any of
the trap-door information d, p, q, φ(N).

This attack suggests that to defend RSA, one should never use common
modulus in RSA encryption.

164 6. Simple Elementary Attacks

6.8 Fixed-Point Attack

In this section we introduce one more simple elementary attack on RSA, the
fixed-point attack, which does not rely on the factorization of N and the use
any trap-door information. The fixed-point attack is also called cyclic attack
or superencryption attack. This attack was discovered by Simmons and Norris
in 1977, as soon as the RSA cryptographic system was invented.

Definition 6.8.1. Let 0 ≤ x < N . If

xek ≡ x (mod N), k ∈ Z+ (6.20)

then x is called the fixed-point of RSA(e,N) and k is the order of the fixed-
point.

Theorem 6.8.1. Let C to be the fixed-point of RSA(e,N) with order k:

Cek ≡ C (mod N), k ∈ Z+

then

Cek−1 ≡ M (mod N), k ∈ Z+

Proof. Since the RSA encryption C ≡ Me (mod N) is a permutation on
the message space {0, 1, 2, · · · , N − 1}, such an integer (fixed-point) Cek ≡
C (mod N) must exist. For the same reason, it must be the case that

Cek−1 ≡ M (mod N),

since

Cek ≡ C (mod N)

=⇒ Cek ≡ Me (mod N)

=⇒ Cek−1e ≡ Me (mod N)

=⇒ (Cek−1
)e ≡ Me (mod N)

=⇒ Cek−1 ≡ M (mod N).

2

Theorem 6.8.1 provides a straightforward attack on RSA just by comput-
ing the sequence of numbers, modulo N :

Ce Ce2
Ce3 · · · Cek−1

Cek

⇑ ⇓
M C

That is, as soon as Cek

mod N = C is obtained, we stop the computation,
and pick the last second number Cek−1

mod N , which must be the RSA(M)
(Depicted in Figure 6.1).

6.8 Fixed-Point Attack 165

C

.
..

.
. .

Ce Ce2

Ce3

Cek

Ce4

Cek−1

Cei

M

Figure 6.1. Fixed-Point Attack

Example 6.8.1. We illustrate the fixed-point attack by selecting an encryp-
tion example from the original RSA paper (Page 124 of [262]), where

e = 17
N = 2773
C = 2342.

We construct the sequence Cek

mod N for k = 1, 2, 3, · · · using the following
process

e ← 17
N ← 2773
C ← 2342
for k from 1 to 100 do

A ← Cek

mod 2773
if A = C then M ← Cek−1

mod 2773
print(k,M,C);

as follows:

2365 1157 2018 985 1421 2101 1664 2047 1539 980
1310 1103 1893 1629 2608 218 1185 1039 602 513
772 744 720 2755 890 2160 2549 926 536 449
2667 2578 182 2278 248 454 1480 1393 2313 2637
2247 1688 1900 2342

⇑ ⇓
M C

Since C ≡ 23421744
(mod 2773) is the fixed-point of RSA(17, 2773) with

k = 44, then M ≡ C1743 ≡ 1900 (mod 2773) is the plaintext of C = 2342.
Indeed, 1900 is the plaintext of 2342, since one can easily verify that

190017 mod 2773 = 2342.

So, in this example we did not use any of the trap-door information
(d, p, q, φ(N)) to break C.

166 6. Simple Elementary Attacks

Remark 6.8.1. The above example actually shows an interesting fact that

M ≡ 2342157

≡ 234281152820641272625991922463475488672334362661535406513

≡ 1900 (mod 2773)

Remark 6.8.2. Suppose e has order r in the multiplicative group modulo
λ(N). Then er ≡ 1 (mod λ(N)), so Mer ≡ M (mod N). This is just the rth

iterate of the encryption of M . Thus, we must ensure that r is large.

6.9 Chapter Notes and Further Readings

This chapter discussed some cryptanalytic attacks on RSA based on some el-
ementary number-theoretic properties and/or the improper uses of the RSA.
Clearly, if the message space M is small or predictable, the attacker can de-
crypt the ciphertext C by computing all possible C ′ ≡ M ′2 (mod N) to see
if a C ′ = C can be found. If so, then the M ′ is the required M . Hence decrypt
the ciphertext. This is called the forward search attack. However, this attack
will not work if the original plaintext M is appended by random bit string
prior to encryption; the random bit string should be independently generated
for each encryption, even for the same message M . This process of append-
ing a random string to the original message is known as the message salting.
Most of the attacks discussed in this chapter will not be valid if the RSA
encryption is used and implemented properly. Thus, these attacks essentially
just illustrate the pitfalls to be avoided when implementing and using RSA.
The following references provide discussions and/or overviews of the known
attacks on RSA from 1978 to present time: Rivest [263], Boneh [37], Coron
[83] Countinho [88], Kaliski and Robshaw [162], Koblitz and Menezes [176],
and Mollin [217].

The computational equivalence of computing d and factoring N , and com-
puting φ(N) and factoring N are well known and discussed in many refer-
ences, say, e.g., Rivest, Shamir and Adleman [262] and Rivest and Kaliski
[264]. The common modulus attacks are due to DeLaurentis [96] and Simons
[301]. The fixed point attack was first studied by Simons and Morris [300].
Gysin and Seberry in [133] generalized the fixed point attack to the cases
without the knowledge of e and C, and hence these attacks can be used as
factoring algorithms; They also translated their attacks to elliptic curves. A
generalized birthday attack on RSA was also studied by Girault et al pro-
posed in [120].

6.9 Chapter Notes and Further Readings 167

It is also interesting to note a recent paper by Coron and May [85] that
computing d and factoring N are deterministic polynomial-time equivalent.
That is.

{d} P⇐⇒ IFP(N).

Previously it is only known [262] that

IFP(N) P=⇒ {d}, {d} RP=⇒ IFP(N).

However, this does not imply that factoring N is computationally equiva-
lent to breaking RSA, since breaking RSA may be easier than factoring N ,
although no proof has been given.

7. Public Exponent Attacks

How can you use one thing’s impossibility to make another thing pos-
sible that was otherwise impossible too? If we pause to think about it,
we would expect nothing of any value to come of negative in algorith-
mics, except in helping prevent people from wasting time trying to do
things that can’t be done. Nevertheless, problems for which we have
no good solutions are crucial here; in fact, if they turn out to have
good solutions we are in big trouble!

David Harel
Professor of Computer Science, Weizmann Institute of Science

7.1 Introduction

In order to improve the efficiency of the RSA encryption:

C ≡ Me (mod N)

it is desirable to use a small public (encryption) exponent e such as e = 3 =
(11)2 or e = 17 = (10001)2:

C ≡ M3 (mod N) or C ≡ M7 (mod N).

By using the repeated squaring method (Algorithm 1.3.5, starting from the
most significant bit), it only requires one modular squaring and one mod-
ular multiplication for e = 3, and four modular squaring and one modular
multiplication for e = 17 as follows:

Bits Operations Results Bits Operations Results
1 M M 1 M M
1 M2 ·M M3 0 M2 M2

0 (M2)2 M4

0 ((M2)2)2 M8

1 (((M2)2)2)2 ·M M17

170 7. Public Exponent Attacks

However, as the public exponent e and the private exponent d are a pair of
invertible elements modulo φ(N). That is,

ed ≡ 1 (mod φ(N)).

Thus, in theory, once the public-key (e,N) is given, d is completely deter-
mined:

d ≡ 1/e (mod φ(N)).

Of course, the existence of d in the above formula does not mean d can be
found efficiently, just the same as that the existence and uniqueness of prime
factorization of N does not imply the prime factorization of N can be found
efficiently. There are apparently at least two ways to find d:

(1) If φ(N) is given, or alternatively, if the prime factorization of N = pq is
known, then d can be computed by using extended Euclid’s algorithm to
the linear Diophantine equation ed− kφ(N) = 1.

(2) Even if φ(N) or the prime factorization of N is unknown, it may still be
possible to find d from the given public-key (e,N) in polynomial-time,
provided that an improper use of RSA can be discovered, for example, if
e is chosen to be small in some circumstances. That is,

{e,N} find−−−−−−−−−−−−−−−−−−−→
maybe easy when e small

{d}.

In this chapter, we shall study some of these cryptanalytic attacks of the
second category.

7.2 A Theorem of Coppersmith

The Coppersmith theorem of 1997 (see [76], [77], [78], [79], [80] and [146])
is one of the most important results in cryptanalytic attacks on RSA, and
has a great impact on the attacks on short RSA public exponent e. In fact,
the most powerful attacks on short RSA public exponent e are based on the
theorem.

Let N be a large odd composite. Let p(x) be a univariate, monic and
reducible modular polynomial:

p(x) = xδ + aδ−1x
δ−1 + · · ·+ a1x + a0 ∈ Z[x],

where δ ∈ Z+ is the degree of the polynomial. For a suitable bound B, we wish
to find all small integer roots x0 such that |x0| ≤ B and p(x0) ≡ 0 (mod N).
Such integers of x0 are called small roots or small solutions of the univariate
modular polynomial equation p(x).

7.2 A Theorem of Coppersmith 171

Theorem 7.2.1 (Coppersmith). Let N be a large odd composite. Let p(x)
be a univariate, monic and reducible modular polynomial:

p(x) = xδ + aδ−1x
δ−1 + · · ·+ a1x + a0 ∈ Z[x], (7.1)

where δ ∈ Z+ is the degree of the polynomial. Let x0 be solution to the
modular polynomial equation, defined in (7.1):

p(x) ≡ 0 (mod N). (7.2)

Then if |x0| ≤ N1/δ, x0 can be computed in time polynomial in δ and ln(N).

The main technique in the proof of the theorem is the non-trivial use of
the lattice basis reduction algorithm, called LLL and invented by Lenstra,
Lenstra and Lovász in 1982 [188]; in its simplest non-technical language, the
modular polynomial equation of degree δ

p(x) ≡ 0 (mod N)

was transformed to an exact, non-congruence, polynomial equation

r(x) = 0

by using a lattice of dimension δ + 1, then just solve r(x) for solutions.
Solving a congruence polynomial equation requires to factor N , which is
hard, whereas solving an exact non-congruence polynomial equation can be
done by numerical procedures such as the Newton’s method, which is not so
hard. Normally, when applying LLL, the value for δ must be small enough
so that LLL can be run in reasonable amount of time. But the significance
of Coppersmith theorem is that it uses higher dimension lattices to look
for all small integer solutions/roots (if they exist) x0 of the polynomial
equation p(x) ≡ 0 (mod N), and if |x0| ≤ N1/2, then x0 can be found in
polynomial-time. Note that soon after Coppersmith proposed his method in
1996, Howgrave-Graham in 1997 [146] proposed a a new method for finding all
small integer roots, |x0| ≤ N1/δ, of Equation (7.1), hence, a new proof of the
Coppersmith theorem 7.2.1. Although by the general result of dual lattices,
the two methods are equivalent, Howgrave-Graham’s is computationally more
efficient than Coppersmith’s. Howgrave-Graham has specifically presented a
nice example of computing a small root of the modular polynomial equation

p(x) ≡ x2 + 14x + 19 ≡ 0 (mod 35)

as follows: First form the 6 × 6 matrix (in Coppersmith’s method, it would
need to form a 10× 10 matrix) M :

M =

1225
0 1225 · 2 0
665 490 · 2 35 · 22

0 665 · 2 490 · 22 35 · 23

361 532 · 2 234 · 22 28 · 23 24

0 361 · 2 532 · 22 234 · 23 28 · 24 25

.

172 7. Public Exponent Attacks

Using LLL, M is reduced to B:

B =

3 8 · 2 −24 · 2 −8 · 23 −1 · 24 2 · 25

49 50 · 2 0 20 · 23 0 2 · 25

115 −83 · 2 4 · 22 13 · 23 6 · 24 2 · 25

61 16 · 2 37 · 22 −16 · 23 3 · 24 4 · 25

21 −37 · 2 −14 · 22 2 · 23 14 · 24 −4 · 25

−201 4 · 2 33 · 22 −4 · 23 −3 · 24 1 · 25

where B = HM with

H =

70 46 −98 32 −57 2
73 48 −104 32 −56 2
55 36 −74 27 −50 2
125 82 −171 60 −109 4
−175 −115 254 −74 126 −4
41 27 −59 18 −31 1

.

Dividing the entries of b1 by 20, 21, 22, 23, 24, 25 gives the required polynomial

r(x) = 2x5 − x4 − 8x3 − 24x2 + 8x + 3.

Solving this polynomial over Z gives the solution x0 = 3. Interested readers
are suggested to consult Howgrave-Graham’s original paper in [146].

Coppersmith’s theorem has many novel applications, mostly in cryptol-
ogy, for example, one of them is in the proof of the result in Theorem 6.5.2:

IFP(N) P⇐⇒ RSA(d).

Since we are concerned with cryptanalytic attacks on RSA the most interest-
ing aspect is that the finding of small solutions to Equation (7.1) can lead to
various attacks on short public exponent e (some of them will be discussed
in this and the next sections). Possibly because of this reason, Lenstra and
Verheul suggested on page 265 in [189] that

Based on recent results in this area the public exponent for RSA must
be sufficiently large. Values such as 3 and 17 can no longer be rec-
ommended, but commonly used values such as 216 + 1 = 65537 still
seem to be fine. If one prefers to stay on the safe side one may select
an odd 32-bit or 64-bit public exponent at random.

7.3 Short e Attacks for Same Messages 173

7.3 Short e Attacks for Same Messages

This section discusses an efficient attack for small e. Let e = 3, the
smallest possible encryption exponent in the RSA encryption. Suppose
that the same massage M was sent to three different recipients using
{(e,N1), (e,N2), (e,N3)}, where gcd(Ni, Nj) = 1 for i, j = 1, 2, 3 with i 6= j,
and M < Ni. Then, M can be recovered very efficiently. That is,

{e, C1, C2, C3, N1, N2, N3} find−−−−−→
easy

{M}. (7.3)

Theorem 7.3.1. Let e1 = e2 = e3 = 3 and

C1 ≡ M3 (mod N1)
C2 ≡ M3 (mod N2)
C3 ≡ M3 (mod N3)

Applying the Chinese Remainder Theorem to the system of congruences

M3 ≡ C1 (mod N1)
M3 ≡ C2 (mod N2)
M3 ≡ C3 (mod N3)

we get

M3 ≡ C1 · (N2 ·N3) · ((N2N3)−1 mod N1) +
C2 · (N1 ·N3) · ((N1N3)−1 mod N2) +
C3 · (N1 ·N2) · ((N1N2)−1 mod N3) (mod N1 ·N2 ·N3).

Thus
M ≡ M1/3.

Proof. Result follows immediately from the Chinese Remainder Theorem.
2

Remark 7.3.1. It is easy to compute the cubic root of x, x1/3, although
the modular cubic root, x1/3 mod N with N a large composite, is hard to
compute, just the same as the modular square root problem, it is easy to
compute x1/2 but it is hard to compute x1/2 mod N with N a large composite.

174 7. Public Exponent Attacks

Example 7.3.1. Let

e = 3,

N1 = 160742267780887390193498154036432277706853678172635349
431669799546987155543930704061491272423912871491087467
23343762489162841829,

N2 = 114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541,

N3 = 180708208868740480595165616440590556627810251676940134
917012702145005666254024404838734112759081230337178188
7966563182013214880557,

M = 200805001301070903002315180419000118050019172105011309
190800151919090618010705,

C1 = M3 mod N1

= 729191335863603524094702563737402819685723566000524152
246303124155589561950490681566138962049778679086940652
7191986148822210607

C2 = M3 mod N2

= 148003742145067300325437785581190327071346176609583779
427938716412300234648347175606574700715211712522069717
42318084225589053107

C3 = M3 mod N3

= 166741721328924021197326007964121772980620672588921670
786680897106877194697211658188467455388280375327727290
0087640189457978330457

Now suppose Eve knows (e, C1, C2, C3, N1, N2, N3) and wants to find M . She
solves the following system of congruences by using the Chinese Remainder
Theorem:

M3 ≡ C1 (mod N1)
M3 ≡ C2 (mod N2)
M3 ≡ C3 (mod N3)

7.3 Short e Attacks for Same Messages 175

to obtain

M3 = 8096989494047998251753188295992808007014048895643298888047323
5901472025322084768639473849156215596333202160107523361828426
2592613313570410096477344103527394431017424522039758939871510
2375210975722643202287023918357565845861111152625

Now the cryptanalyst, Eve, can easily perform the cubic root of M and gets:

M = 2008050013010709030023151804190001180500191721050113091908
00151919090618010705.

As can be seen, Eve can break the RSA encryption without factoring N and
without using any knowledge of the trap-door information {d, p, q, φ(N)}.
Remark 7.3.2. The potential insecure problem of using low public-key
exponent e, particularly for e = 3, as discussed in this section, does not
mean RSA M3 encryption is not secure. Knuth proposed a challenge RSA
M3 encryption problem in his famous and widely distributed book [169]
(page 417); he rated the difficulty of this problem as M50, the hardest class
of mathematics problems in his book. Let C = (M3

1 mod N, M3
2 mod N)

be as follows:
(68750283643708928987899535060440799071689814025858344303553558823747927

108009029304963056665126811233405627433261214282318720373118151963944261

65689989243682712275123771458797372299204125753023665954875641382171,

713013988616927464542046650358646224728216664013755778567223219797011593

220849557864249703775331317377532696534879739201868887567829519032681632

6888127500602518223884462866157583604931628056686699683334519294663)

and N is a 211-digit composite with two prime factors:
779030228851015954236247565470557836248576762097398394108440222213572872

511709998585048387648131944340510932265136815168574119934775586854274094

2256445000879127232585749337061853958340278434058208881085485078737.

Find the plaintext M1 and M2. This challenge has been opened since 1997.

To defend the short public exponent e attack, it should never send the
same message several times even if different moduli are used for different
encryption processes. However, if we increase e = 3 to e = 216 + 1 = 65537
and do the encryption as follows:

C1 ≡ M65537 (mod N1)
C2 ≡ M65537 (mod N2)
C3 ≡ M65537 (mod N3)

then, M will be difficult to recover from C1, C2, C3. To recover M , the at-
tacker needs to receive 65537 ciphertexts, which is almost impossible, since
essentially no-one will send a same message M to 65537 different recipients.
On the other hand, it is still very efficient as e = 3, since e = 216 + 1 =

176 7. Public Exponent Attacks

65537 = (10000000000000001)2, the encryption requires only 17 modular
squarings and two modular multiplications using Algorithm 1.3.5.

Now we consider a general case (linear related plaintexts):

C1 ≡ (a1M + b1)e (mod N1)
C2 ≡ (a2M + b2)e (mod N2)

...
Ck ≡ (akM + bk)e (mod N3)

(7.4)

where k ≥ e and gcd(Ni, Nj) = 1 for i, j = 1, 2, · · · , k with i 6= j and
M < min(Ni), and we ask is it possible to recover M from C1, C2, · · · , Ck

in polynomial-time? The answer is yes if the similar (not exactly the same)
messages is at least seven [136]. We can consider an even more general case:

p1(x) ≡ 0 (mod N1)
p2(x) ≡ 0 (mod N2)

...
pk(x) ≡ 0 (mod Nk)

(7.5)

where each pi(x) for i = 1, 2, · · · , k is a polynomials of degree δ, and Ni are
distinct pairwise relatively prime numbers with x < min(Ni), we ask is it
possible to find all solutions x to (7.5) in polynomial-time? The answer to
this question is again yes if k > δ(δ + 1)/2 provided min(Ni) > 2δ2

[136].
Moreover, Hastäd showed that

[1] Sending linearly related messages using RSA with short public exponent
e is not secure. If more than e(e+1)/2 such messages are sent it is possible
for a cryptanalyst to recover the messages in polynomial-time provided
that the moduli Ni > 2(e+2)(e+1)/4(e + 1)e+1.

[2] Sending linearly related messages using Rabin cryptosystem which uses
the encryption function x 7→ x2 (mod N) is not secure. If three such
messages are sent it is possible for a cryptanalyst to recover the message
in polynomial-time.

Again, similar to Coppersmith and Howgrave-Graham, Hastäd uses LLL to
obtain the above results. As a consequence, using small e, e.g., e = 3, 17,
as public exponent is not a good choice for application of RSA in a large
network system. However, this attack may be thwarted by using some salting
and padding processes such as OAEP [114] or the one discussed in [87], prior
to encryption.

The above discussed attack on short e for same (or similar) messages is
known as Hastäd’s broadcasting attack. A stronger version of Hastäd’s attack
was proved by Boneh [37]:

Theorem 7.3.2. Let N1, N2, · · · , Nk be pairwise relatively prime with N1 ≤
Ni for all i = 1, 2, · · · , k. Let pi(x) ∈ ZNi

[x] for i = 1, 2, · · · , k be the k

7.4 Short e Attacks for Related Messages 177

polynomials with maximum degree δ. Suppose there exists a unique M < N1

such that pi ≡ 0 (mod Ni) for all i = 1, 2, · · · , k and k ≤ δ, then M can be
computed in polynomial-time.

Example 7.3.2 (Mollin [217]). Suppose that Bob is communicating with
recipient R1, R2, · · · , Rk, and the public exponent e < k. Suppose now Bob
wants to send the same message M to all the k users. Bob performs:

[1] He first pads the message M for each recipient Ri as follows (to increase
the security, he shall randomize his padding process each time):

pi(M) = 2ti + M

where t is the bit length of M .
[2] He then sends

pe
i (M) ≡ (2ti + M)e (mod Ni)

for i = 1, 2, · · · , k to the k recipients.

Then if the cryptanalyst, Eve, intercepts more than e of these pe
i (M) for

i = 1, 2, · · · , k messages, she can recover M in polynomial-time by Theorem
7.3.2.

7.4 Short e Attacks for Related Messages

In the previous section, we considered attacks on short RSA public exponent
e encryption for the same (or the similar) message M . In this section, we
consider attacks on short e encryption for the related messages using the
same modulus, due to Coppersmith, Franklin and Reiter [81].

Theorem 7.4.1. Let M1 and M2 are messages related to the following
known relation:

M2 = αM1 + β. (7.6)

Suppose the RSA M3 encryption uses the same modulus N as follows:

C1 ≡ M3
1 (mod N),

C2 ≡ (αM1 + β)3 (mod N).

}
(7.7)

Then

M1 ≡ β(C2 + 2α3C1 − β3)
α(C2 − α3C1 + 2β3)

≡ 3α3βM3
1 + 3α2β2M2

1 + 3αβ3M1

3α3βM2
1 + 3α2β2M1 + 3αβ3

(mod N). (7.8)

178 7. Public Exponent Attacks

Proof. Result follows by the substitution of C1 and C2 in (7.7) and (7.8).
2

Corollary 7.4.1. If we let M1 = M , M2 = M + 1, and α = β = 1, then
(7.8) reduces to the following special case:

M ≡ (M + 1)3 + 2M3 − 1
(M + 1)3 −M3 + 2

≡ 3M3 + 3M2 + 3M

3M2 + 3M + 3
(mod N). (7.9)

Example 7.4.1. Give the relation M2 = αM1 + β and let

α = 3
β = 5
N = 779030228851015954236247565470557836248576762097398394

108440222213572872511709998585048387648131944340510932
265136815168574119934775586854274094225644500087912723
2585749337061853958340278434058208881085485078737

C1 = 132057584044937409231208389323398996878812486949811558
724214983072091380989054308161277959733824865068687594
213139826622055543700074552293693503940351187203266740
911056806170880679978462212228231292575333924006

C2 = 356555476921331004924262651173177291572793714764491209
099736209686208403812308104374465892532943045181265208
185871222090592859132787427488883517622574112296645299
2998335410453929161733393892204730002674838955287

Then

M1 ≡ 5(C2 + 2 · 33 · C1 − 53)
3(C2 − 33 · C1 + 2 · 53)

≡ 200805001301070903002315180419000118050019172105011309
190800151919090618010705 (mod N)

M2 ≡ 3M1 + 5 (mod N)
≡ 602415003903212709006945541257000354150057516315033927

572400455757271854032120 (mod N)

It is easy to verify that M1 and M2 are the correct plaintexts of C1 and C2,
since

7.4 Short e Attacks for Related Messages 179

C1 ≡ M3
1 mod N

= 132057584044937409231208389323398996878812486949811558
724214983072091380989054308161277959733824865068687594
213139826622055543700074552293693503940351187203266740
911056806170880679978462212228231292575333924006

C2 ≡ M3
2 mod N

= 356555476921331004924262651173177291572793714764491209
099736209686208403812308104374465892532943045181265208
185871222090592859132787427488883517622574112296645299
2998335410453929161733393892204730002674838955287

as required. Note that to recover M1 and M2 from C1 and C2 in the present
case, it is no need to factor N , the 211-digit modulus, and also no need to
find d.

Remarkably enough, when e > 3, the above attack on RSA will still work.

Theorem 7.4.2. Let e = 5, and set

C1 ≡ M5 (mod N),

C2 ≡ (M + 1)5 (mod N).

}
(7.10)

Then

G ≡ C3
2 − 3C1C

2
2 + 3C2

1C2 − C3
1 + 37C2

2 + 176C1C2 + 37C2
1

+73C2 − 73C1 + 14 (mod N)

F ≡ M ·G ≡ 2C3
2 − C1C

2
2 −−4C2

1C2 + 3C3
1 + 14C2

2 − 88C1C2

−51C2
1 − 9C2 + 64C1 − 7 (mod N).

(7.11)

Hence

M ≡ F/G (mod N). (7.12)

Proof. Result follows by substituting C1 and C2 in (7.10) to G and F in
(7.11), respectively. 2

Example 7.4.2. Let again

N = p · q = 179424797 · 197747359 = 35480779745861123.

Suppose also we have

180 7. Public Exponent Attacks

M = 19443855347586362
C1 ≡ M5

1

≡ 194438553475863625

≡ 18796237015415790 (mod 35480779745861123)
C2 ≡ (M + 1)5

≡ (19443855347586362 + 1)5

≡ 7290180156009373 (mod 35480779745861123).

Now suppose we are given

N = 35480779745861123
C1 = 18796237015415790
C2 = 7290180156009373

then by applying the attack, we can recover M and (M +1)5 from (N, C1, C2)
as follows:

G = C3
2 − 3C1C

2
2 + 3C2

1C2 − C3
1 + 37C2

2 + 176C1C2 + 37C2
1

+73C2 − 73C1 + 14
= −1523279324842988466954772791427559863314856282747

F = M ·G
= 2C3

2 − C1C
2
2 − 4C2

1C2 + 3C3
1 + 14C2

2 − 88C1C2 − 51C2
1

−9C2 + 64C1 − 7
= 9395548833480469958356555780341195368351546079066

M ≡ F/G

≡ 9395548833480469958356555780341195368351546079066
−1523279324842988466954772791427559863314856282747

≡ 19443855347586362 (mod 35480779745861123).

So, we have done, and everything is correct, as expected.

Clearly, when e becomes large, the algebraic formulas for computing the
two polynomials G and F in C1 and C2 will be complicated and require O(e2)
coefficients. Fortunately, there is a simple and direct method for arbitrary e.

Proposition 7.4.1. Let x = M denote the unknown message m, then x
satisfies:

xe − C1 ≡ 0 (mod N)

(x + 1)e − C2 ≡ 0 (mod N)

}
(7.13)

Then

7.4 Short e Attacks for Related Messages 181

gcd(xe − C1, (x + 1)5 − C2) ∈ ZN [x], (7.14)

which will almost produce the linear polynomial x−M .

The attack applies to any values of e. By using some sophisticated tech-
nique in the theory of continued fractions [313], the computation of gcd
of two polynomials of degree e over ring ZN [x] can be performed in time
O((e log e)2). Thus, the attack may be practical for all e with length up to
32 bits. Hence, the attack will be very efficient for e = 216 + 1 = 65537.

Example 7.4.3. Let

M2 = 2M1 + 3 (mod N)
e = 5

N = 35480779745861123 = 179424797 · 197747359
C1 = E(M1) = 18796237015415790
C2 = E(M2) = 7290180156009373

Suppose the authorized people know M1,M2, C1, C2 as follows

M1 = 19443855347586362
M2 = 2M1 + 3

≡ 2 · 19443855347586362 + 3
≡ 3406930949311604 (mod 35480779745861123)

C1 ≡ M5
1

≡ 194438553475863625

≡ 18796237015415790 (mod 35480779745861123)
C2 ≡ (2M + 3)5

≡ (2 · 19443855347586362 + 3)5

≡ 30744837049745686 (mod 35480779745861123)

The attacker, however, only knows (N, e, C1, C2) but he wants to know M1

and M2. By Proposition (7.4.1), he can recover the two related unknown
plain-texts (M1,M2) from the known ciphertexts (C1, C2) by computing the
greatest common divisor of two polynomials over the integer ring ZN [x],
where N = pq with p, q primes:

gcd(z5 − 18796237015415790, (2z + 3)5 − 30744837049745686) (mod N).

Of course, he cannot directly find the gcd, but there is a very efficient indirect
method to compute the gcd, as follows:

[1] Compute the gcd over Zp and Zq:

182 7. Public Exponent Attacks

gcd(x5 − 18796237015415790, (2x + 3)5 − 30744837049745686)

≡ 97067290 + z (mod 179424797)

gcd(x5 − 18796237015415790, (2x + 3)5 − 30744837049745686)

≡ 179461606 + z (mod 197747359)

[2] Use the Chinese Remainder Theorem to solve the following system of
congruence equations:

{
y ≡ 97067290 + x (mod 179424797)
y ≡ 179461606 + x (mod 197747359)

and get

gcd(x5 − 18796237015415790, (2x + 3)5 − 30744837049745686)
≡ 16036924398274761 + x
≡ x− 19443855347586362 (mod 35480779745861123).

So, he concludes that

M1 = 19443855347586362
M2 = 2M1 + 3

= 3406930949311604.

Thus, he successfully and efficiently recovers the original plaintexts (M1,M2).

In [81], Coppersmith, et al even considered the case when the k messages
M1,M2, · · · ,Mk are related by a polynomial p(M1,M2, · · · ,Mk), and we
know the ciphertexts C1, C2, · · · , Ck and the coefficients of the polynomial p.

Proposition 7.4.2. Suppose there are k messages m1,m2, · · · ,mk, related
by a polynomial p(m1,m2, · · · ,mk) with degree δ. Suppose also that we know
the ciphertexts Ci ≡ Me

i (mod N) and the coefficients of the polynomial p.
By substituting the variables Zi for the unknown message Mi, the following
k + 1 polynomials can be obtained:

p0(x1, x2, · · · , xk) ≡ p(x1, x2, · · · , xk) ≡ 0 (mod N)
p1(x1) ≡ xe

1 − C1 ≡ 0 (mod N)
p2(x2) ≡ xe

2 − C2 ≡ 0 (mod N)
...

pk(xk) ≡ xe
k − Ck ≡ 0 (mod N)

Then, by computing the Gröbner base [334]

Grobner([P0, P1, P2, · · · , Pk])

the final result will thus generally be generated:

[x1 −M1, x2 −M2, · · · , xk −Mk].

7.5 Lattice Attack for Stereotyped Messages 183

Interested readers are suggested to consult the original paper [81] for
more information and particularly for the implications of these attacks to
the security of some cryptographic protocols.

The short e attacks on related messages discussed above might seem to
be rather artificial, since in the real world situation, two plaintexts may not
be related at all. A strengthened version of the attack on random padded
and related messages, known as short pad attacks, due to Coppersmith [78],
may be described as follows. Suppose Bob want to send a message M to
Alice. He randomly pads M and transmits the resulting ciphertext. Eve, the
cryptanalyst, now has two ciphertexts of the same message using two different
random pads. Coppersmith shows in the following theorem that although Eve
does not know the pads Bob used, she can recover the plaintext in polynomial-
time.

Theorem 7.4.3 (Coppersmith). Let N be a β bit RSA modulus, and e
the public exponent. Set m = bN/e2c. Suppose that M ∈ Z∗N is the plaintext
message at most β −m bits. Define

M1 ≡ 2mM + r1

M2 ≡ 2mM + r2

where r1, r2 are two distinct integers with r1 6= r2 and 0 ≤ r1, r2 < 2m. Then
given (N, e) and the ciphertexts C1, C2 of M1,M2, but it is not given r1 or
r2, M can be efficiently recovered.

Corollary 7.4.2. Let e = 3. Then the short pad attack can be mounted as
soon as the pad length is less than 1/9 of the message length.

This is true because if the message length is γ, then

{r1, r2} < 2γ/9 < 2β/9 = 2m.

Note that the short pad attack cannot be mounted against the standard
moduli sizes if e = 65537.

7.5 Lattice Attack for Stereotyped Messages

When you open a new account in a bank, your bank will normally send you
a pin number usually in the following form:

Your pin number is ****

or when you open a new computer account in the computing services of your
university, you will normally be informed by

184 7. Public Exponent Attacks

Your login is **** and your passwd is ****

Such messages (consisting of a fixed known string and an unknown num-
ber/string) are called stereotyped messages on page 243 of [78]. Suppose the
messages are encrypted by RSA. We will show in this section that if the un-
known number **** is chosen to be small, then it can be easily recovered.
For the simplicity of the discussion, we consider the first case which is of the
form

M = B + x,

C ≡ M3 (mod N)

Thus, by solving the modular cubic polynomial equation

(B + x)3 − C ≡ 0 (mod N) (7.15)

one can recover x and then find the original plaintext message M . The idea
is to use Coppersmith’s LLL technique (i.e., Theorem 7.2.1) to find small
solutions to the modular polynomial equation (7.15).

Theorem 7.5.1. Let the modular cubic polynomial equation be as follows:

(B + x)3 − C ≡ 0 (mod N) (7.16)

where

M = B + x,

C ≡ M3 (mod N)

with N = pq and e = 3 the RSA public-key, B a fix known string, x an un-
known variable, M the plainttext, and C the cyphertext, respectively. Then,
all solutions x0 (if they exist) to (7.16) can be found in polynomial-time
provided that |x0| < N1/3.

The above theorem follows immediately from Theorem 7.2.1.

Remark 7.5.1. As noted in [78], the bound on x0 depends on N . If x0 has
e.g., 250 bits and N has 512 bits, and e = 3, then the present attack will not
work, since x0 > N1/3. However, if we increase N to 1024 bits, but still keep
x0 at 250 bits, then these x0 are vulnerable/recoverable to the attack since
x0 < N1/3. The present attack works for when x0 lies in the least significant
bits of the message M . However, it will also work for x0 lies in the most
significant bits of the message M ; just multiplying x by a known constant
2k.

Remark 7.5.2. As mentioned at the beginning of the section, there are
types of the stereotyped messages such as

7.5 Lattice Attack for Stereotyped Messages 185

Your pin number is ****

Your login is **** and your passwd is ****

It is interesting to note that the present attack to recover all small solutions
x0 to the univariate modular polynomial:

p(x) ≡ (B + x3) ≡ 0 (mod N)

where M = B + x and C ≡ M3 (mod N), can be extended to recover small
solutions x0, y0 to the bivariate modular polynomial:

p(x, y) ≡ C − (B + 2kx + y)3 ≡ 0 (mod N),

where M = B = 2kx + y and C ≡ M3 (mod N), provided that we know
or can correctly guess the length of x and y. For more information on this
extended attack, see [78].

In what follows, we present a small example to show how to use Cop-
persmith’s LLL reduction technique to find the solution x of the modular
polynomial equation.

Example 7.5.1. Let

N = pq

= 9545724696579737 · 5757285757575823
= 54957464841358314276864542898551.

Suppose a Bank wishes to send the following message to Bob:

Your pin no is ****

where ∗ ∗ ∗∗ denotes a four-digits number. The message is of the form

M = B + x

where B = 25152118001609140014150009190000 and 0 ≤ x < 10000. To
stop anyone (e.g., Eve), except Bob, to read the message and to get the Pin
Number, the Bank actually sends the following cipher-text of the original
message to Bob

C ≡ (B + x)3

≡ 37393323096087665763922106857101
(mod 54957464841358314276864542898551)

Eve, the cryptanalyst, wants to know what is x? She can perform the following
steps in order to get x:

186 7. Public Exponent Attacks

[1] Form a polynomial f(x) as follows:

f(x) ≡ (B + x)3 − C

≡ B3 + 3B2x + 3Bx2 + x3 − C

≡ x3 + 3Bx2 + 3B2x + (B3 − C)
≡ x3 + a2x

2 + a1x + a0 (mod N)

where

a2 ≡ 3B

≡ 20498889163469105765585484671449 (mod N)
a1 ≡ 3B2

≡ 31845021436864697339209263035498 (mod N)
a0 ≡ B3 − C

≡ 18283973072868139826273442498263 (mod N)

[2] Let y = 10000 and form a lattice of vectors

v1 = {N, 0, 0, 0}
v2 = {0, yN, 0, 0}
v3 = {0, 0, y2N, 0}
v4 = {a0, ya1, y

2a2, y
4}.

Then use the lattice reduction algorithm LLL to generate a new basis
(b1, b2, b3, b4) as follows:

([-18504894135104109688332562976,137474691810128112063488610000,
-24127286947259086301500000000,2268379855321848000000000000],

[-85425003131834885940087191,8952128526937476800778600000,
-77138687348438814278000000000,121198854674205029000000000000],

[-11820102246776760117626483451,69046919308673008381370870000,
-11820102246776760117626483451, 69046919308673008381370870000],

[53916508268699669314040776549941, 7397921744102586243196709990000,
1080331017291638854711200000000, 91195075558313423000000000000])

[3] Eve uses e.g., the basis vector b1 to form a new polynomial r(x):

r(x) = e3x
3 + e2x

2 + e1x + e0

where

7.6 Chapter Notes and Further Reading 187

b1 =

e3 = 2268379855321848000000000000
e2 = −24127286947259086301500000000
e1 = 137474691810128112063488610000
e0 = −18504894135104109688332562976

Of course, she can use other vectors b2, b3, b4 in the basis as well, e.g.,

b2 =

e3 = 121198854674205029000000000000
e2 = −77138687348438814278000000000
e1 = 8952128526937476800778600000
e0 = −85425003131834885940087191

or

b3 =

e3 = 101192326455316926000000000000
e2 = 106916556148249849240400000000
e1 = 69046919308673008381370870000
e0 = −11820102246776760117626483451

or

b4 =

e3 = 91195075558313423000000000000
e2 = 1080331017291638854711200000000
e1 = 7397921744102586243196709990000
e0 = 53916508268699669314040776549941

[4] Solving the polynomial equation r(x) = 0, based on e.g., b1, Eve gets:

x =

1379
52492.26074 + 56216.26293i
52492.26074− 56216.26293i

As the only integer solution to the equation r(x) = 0 is x = 1379, so Eve
concludes that Bob’s Pin Number is 1379. Eve of course can try other
vectors b2, b3, b4 of the basis to find the required x.

7.6 Chapter Notes and Further Reading

To speed-up the computation in the RSA encryption process, it is very nec-
essary for the public exponent e to be small. For example, PEM [19] recom-
mends 3, the RSA Encryption Standard PKCS #1 [271] recommends 3 or
65537, and the ITU-T standard for public key infrastructure X.509 [154] rec-
ommends 65537. However, when e is small, M may be computed efficiently

188 7. Public Exponent Attacks

from the given information (e,N,C). It is conjectured that breaking RSA
is equivalent to factoring the RSA modulus N , but obviously this cannot
be true if e is small. Hastäd [136] may be the first to systematically study
the small public exponent e attack; he showed, among others, that send-
ing the linearly related messages using RSA with low exponent e, such as
Ci ≡ (aiM + bi)e (mod Ni) with i = 1, 2, 3, · · · , k, ai and bi are known, is
insecure; in fact, sending k ≥ e(e+1)/2 messages enables the eavesdropper to
recover M from Ci, provided that the condition Ni > 2(e+1)(e+2)/4(e+1)e+1 is
satisfied. Remarkably enough, this is also true for the elliptic curve analogues
of RSA, say, e.g, the KMOV analogue [180] and the Demytko analogue [98].
For example, Kurosawa et al [182] showed that for N ≥ 21024, if e = 5 and
k ≥ 428, then M can be computed from C1, C2, · · · , Ck in polynomial-time
for both the KMOV analogue and the Demytko analogue for elliptic curves
over ZN with N = pq, where p and q are primes.

The attacks on small public exponent e for polynomially related messages
was studied in Coppersmith, et al [81]; it is particularly useful since several
cryptographic protocols are based on encryptions of the polynomially related
messages. Recent result shows that the public exponent e for RSA must be
sufficiently large. Values such as 3 and 17 can no longer be recommended,
but commonly used values such as 216 + 1 = 65537 will still be acceptable.
Currently, a random odd 32-bit or 64-bit number is a good choice for e.

Several attacks on RSA encryption with small public exponent e for both
same messages and related (linear and polynomial related) messages have
been studied in this section. Readers who wish to get more information about
the attacks on RSA low public exponent e are suggested to consult the follow-
ing references for more information: Boneh [37], Brier et al [56], Coppersmith
[78], Coppersmith and Franklin et al [81], Coron et al [84], Hastäd ([139] and
[136]), Gueron and Seifert [131], Kurosawa et al [182], Lenstra and Verheul
[189], Salah, Darwish and Oqeili [273], Sun and Wu [314], and Jacobi and
Jacobi [155]. Fouque et al proposed in [113] a power attack on small RSA
public exponent, and Kurosawa et al [182] studied attack for elliptic curve
RSA of KMOV [180] and Demytko [98].

Crouch and Davenport [91] considered a hypothetical situation in which
low public exponent e is used to encrypt IP packets, TCP segments or TCP
segments carried in IP packets. For this scenario, they applied the Copper-
smith [78] and Howgrave-Graham [146] lattice methods, in conjunction with
the TCP/IP protocols, to decrypt the specific packets when they get retrans-
mitted due to a denial-of-service attack on the receiver’s side.

It should be noted that although in RSA cryptosystem, (e,N) is public
information, it is still a good idea to keep it as secret as possible, since, as
we shall discuss later, an adversary may retrieve secret information from the
public information ([56] and [131]); this is why most of the security agencies
do not disclose their public-key information to the public even if they use the
public-key cryptosystems.

8. Private Exponent Attacks

The protection provided by encryption is based on the fact that most
people would rather eat liver than do mathematics.

Bill Neugent
Cybersecurity Consultant, Virginia

8.1 Introduction

In the previous chapter, we studied some cryptanalytic attacks applied to the
case that the RSA public exponent e is small. That is, when e is small in some
circumstances, then given (e,N), M can be recovered from C efficiently:

{e,N} P−−−−−−−−→
e is small

{M} (8.1)

Thus, it is a good idea to try to avoid the use of small e such as e = 3, 17
whenever possible although short e is a common way to speed up the com-
putation of RSA encryption (and RSA signature verification).

The same situation happens for the RSA private exponent d. To speed
up the computation in RSA decryption (and RSA signature generation), it is
often to use small private exponent d. Unfortunately, as we shall see in this
chapter, the use of small private exponent d is not a good idea and can lead
to a total break of the RSA system:

{e,N} P−−−−−−−−−→
d is small

{d} (8.2)

That is, the use of small d is more serious than the use of small e in RSA
system. This is because d is more important than any other piece of trap-door
information (p, q, φ(N)). Once d is known, then it is an easy task to break
RSA. Thus, whenever possible, a larger d should be used.

190 8. Private Exponent Attacks

8.2 Diophantine Attack

In this section, we shall see that if the RSA private exponent d is chosen too
small, e.g., d < N0.25, then by Weiner’s Diophantine attack [324], d can be
efficiently recovered (in polynomial-time) from the public exponent e. That
is,

{e,N} P−−−−−−−−−→
d < N0.25

{d} (8.3)

Weiner’s idea is based on the properties of continued fractions and the idea
of Diophantine approximation.

In as early as 1842 Dirichlet showed that:

Theorem 8.2.1. For any real α and any integer Q > 1, there exist integers
p and q with 0 < q < Q such that

|qα− p| ≤ 1
Q

. (8.4)

This can be generalized to:

Corollary 8.2.1. For any irrational α, there exist infinitely many integers
p/q with q > 0 such that

∣∣∣∣α−
p

q

∣∣∣∣ <
1
q2

. (8.5)

Theorem 8.2.2. For any real α, each convergent p/q satisfies
∣∣∣∣α−

p

q

∣∣∣∣ <
1

2q2
. (8.6)

Moreover,
p

q
=

pi

qi
, for some i. (8.7)

Theorem 8.2.3. Let N = pq with p, q primes and q < p < 2q. Let 1 <
e, d < φ(N) with ed ≡ 1 (mod φ(N)). If d < 1

3
4
√

N , then d can be computed
in polynomial-time.

First we give a lemma relating to a property of continued fraction expan-
sion of a rational number.

Lemma 8.2.1. Suppose that gcd(e,N) = gcd(k, d) = 1 and
∣∣∣∣

e

N
− k

d

∣∣∣∣ <
1

2d2
.

Then k/d is one of the convergents of the continued fraction expansion of
e/N .

8.2 Diophantine Attack 191

Proof. Let N = pq with p, q prime and 1 < p < 2q. Let also the private
exponent d is small, say, e.g.,

d <
1
3

4
√

N.

Then, as we shall show, d will be the denominator of a convergent to the
continued fraction expansion of e/N . 2

Theorem 8.2.4 (Weiner). Let N = pq with p and q primes such that
{

q < p < 2q

d < 1
3

4
√

N
(8.8)

then given e with ed ≡ 1 (mod φ(N)), d can be efficiently calculated.

Proof. Since ed ≡ 1 (mod φ(N)),

ed− kφ(N) = 1

for some k ∈ Z. Therefore
∣∣∣∣

e

φ(N)
− k

d

∣∣∣∣ =
1

dφ(N)
.

Since N = pq > q2, we have q <
√

N . Also since φ(N) = N − p− q + 1,

0 < N − φ(N) = p + q − 1 < 2q + q − 1 < 3q < 3
√

N.

Now,
∣∣∣∣

e

N
− k

d

∣∣∣∣ =
∣∣∣∣
ed− kN

dN

∣∣∣∣

=
∣∣∣∣
ed− kN + kφ(N)− kφ(N)

dN

∣∣∣∣

=
∣∣∣∣
1− k(N − φ(N))

dN

∣∣∣∣

<
3k
√

N

dN

=
3k

d
√

N

<
1

2d2
.

192 8. Private Exponent Attacks

Thus, by Lemma 8.2.1, k/d must be one of convergents of the simple con-
tinued fraction e/N . Therefore, if d < 1

3
4
√

N , the d can be computed via the
elementary task of computing a few convergent of e/N , which can be done
in polynomial-time. 2

Theorem 8.2.4 tells us that the private-key d should be large enough
(nearly as many bits as the modulus N); or otherwise, by the properties of
continued fractions, the private-key d can be found in time polynomial in the
length of the modulus N , and hence decrypt RSA(M).

Example 8.2.1. Suppose that N = 160523347 and e = 60728973. Then the
continued fraction expansion of e/N is as follows:

e

N
= 0 +

1

2 +
1

1 +
1

1 +
1

1 +
1

4 +
1

12 +
1

102 +
1

1 +
1

1 +
1

2 +
1

3 +
1

2 +
1

2 +
1
36

= [0, 2, 1, 1, 1, 4, 12, 102, 1, 1, 2, 3, 2, 2, 36]

and the convergents of the continued fraction are as follows:

[
0,

1
2
,
1
3
,
2
5
,
3
8
,
14
37

,
171
452

,
17456
46141

,
17627
46593

,
35083
92734

,
87793
232061

,
298462
788917

,

684717
1809895

,
1667896
4408707

,
60728973
160523347

]
.

If condition (8.8) is satisfied, then the unknown fraction k/d is a close ap-
proximation to the known fraction of e/N . Lemma 8.2.1 tells us that k/d
must be one of the covergents of the continued fraction expansion of e/N . As
can be seen, there are 15 such convergents; we need to find the “right” one.
There are two methods to find the right value for d.

(1) The first method is to use the following trial-and-error procedure: if k/d
is a convergent of e/N , then we compute φ(N) = (ed − 1)/k and solve
the quadratic equation p2 − (N − φ(N) + 1)p + N = 0, and check if it
leads to a factorization of N . If yes, use the factors p and q just found

8.2 Diophantine Attack 193

to compute d ≡ 1/e (mod φ(N)) and to recover M from C. If no, then
pick up the next convergent of e/N and try again. The following are the
trying process starting from the second convergents:

Suppose k
d

= 1
2, then

φ(N) = ed− 1
k

= 60728973 · 2− 1 = 121457945,

p2 − (N − φ(N) + 1)p + N = 0

=⇒ p = 39065403
2 −

√
1526105069459021

2
which is impossible, thus d 6= 2.

Suppose k
d

= 1
3, then

φ(N) = ed− 1
k

= 60728973 · 3− 1 = 182186918,

p2 − (N − φ(N) + 1)p + N = 0

=⇒ p = −10831785−√117327405762878

which is impossible, thus d 6= 3.

Suppose k
d

= 2
5, then

φ(N) = ed− 1
k

= 60728973 · 5− 1
2 = 151822432,

p2 − (N − φ(N) + 1)p + N = 0

=⇒ p = 4350458− 3
√

2102924920713

which is impossible, thus d 6= 5.

Suppose k
d

= 3
8, then

φ(N) = ed− 1
k = 60728973 · 8− 1

3 = 485831783
3 ,

p2 − (N − φ(N) + 1)p + N = 0

=⇒ p = −4261739
6 − 18156640463629

6
which is impossible, thus d 6= 8.

Suppose k
d

= 14
37 , then

φ(N) = ed− 1
k

= 60728973 · 37− 1
14 = 160498000,

p2 − (N − φ(N) + 1)p + N = 0

=⇒ p = 12347, q = N/p = 13001.

Sucessful, since N = pq = 12347 · 13001 = 160523347.

194 8. Private Exponent Attacks

Given p, q, we can now find d ≡ 1/e ≡ 37 (mod (12347− 1)(13001− 1))
easily, and hence, find the plain-text M . Of course, the above procedure
to find d by finding (p, q) after the convergents of e/N is known is not
the only possible procedure.

(2) The second possible method is to test whether or not aed ≡ a (mod N)
for some randomly chosen a, since d should be one of the denominators

{2, 3, 5, 8, 37, 452, 46141, 46593, 92734, 232061, 788917,
1809895, 4408707, 160523347}

of the e/N convergents, but of course we do not know which one. Thus,
we can simply test:

260728973·2 mod 160523347 = 137369160 6= 2

260728973·3 mod 160523347 = 93568289 6= 2

260728973·5 mod 160523347 = 73692312 6= 2

260728973·8 mod 160523347 = 30860603 6= 2

260728973·37 mod 160523347 = 2

which gives d = 37, as required.

Remark 8.2.1. The above attack in fact gives all the trap-door information
{d, φ(N), p, q} as follows:

φ(N) = (ed− 1)/pi

= (60728973 · 37− 1)/14
= 160498000,

{p, q} ⇐ x2 − (N − φ(N) + 1) + N

⇒ x2 − (160523347− 160498000 + 1)x + 160523347
⇒ {p, q} = 12347 · 13001

Thus, for N = 160523347, Wiener’s attack works well for

d <
4
√

N

3
≈ 37.52.

Example 8.2.2. Let

N = 28562942440499
e = 7502876735617.

Then the continued fraction expansion of e/N is as follows:

e

N
= [0, 3, 1, 4, 5, 1, 1, 3, 16, 1, 7, 1, 7, 1, 4, 1, 1, 2, 1, 1, 3, 3, 4, 2, 2, 4, 12, 3, 2, 1, 2]

8.3 Extended Diophantine Attacks 195

and the convergents of the continued fraction are as follows:

[
0,

1
3
,
1
4
,

5
19

,
26
99

,
31
118

,
57
217

,
202
769

,
3289
12521

,
3491
13290

,
27726
105551

,
31217
118841

,
246245
937438

,

277462
1056279

,
1356093
5162554

,
1633555
6218833

,
2989648
11381387

,
7612851
28981607

,
10602499
40362994

,
18215350
69344601

,

65248549
248396797

,
213960997
814534992

,
921092537
3506536765

,
2056146071
7827608522

,
5033384679
19161753809

,

22189684787
84474623758

,
271309602123
1032857238905

,
836118491156
3183046340473

,
1943546584435
7398949919851

,

2779665075591
10581996260324

,
7502876735617
28562942440499

]
.

So the required d must be one of the denominates of the above covergents,
but we do not know which one, so we just try

(37502876735617)3 ≡ 17387646817554 6≡ 3 (mod 28562942440499)

(37502876735617)4 ≡ 7072755623312 6≡ 3 (mod 28562942440499)

(37502876735617)19 ≡ 11902526494611 6≡ 3 (mod 28562942440499)

(37502876735617)99 ≡ 5513494147015 6≡ 3 (mod 28562942440499)

(37502876735617)118 ≡ 8201089526821 6≡ 3 (mod 28562942440499)

(37502876735617)217 ≡ 8739051274402 6≡ 3 (mod 28562942440499)

(37502876735617)769 ≡ 3 (mod 28562942440499)

So, d = 769. Clearly, for N = 28562942440499, Wiener’s attack works well
for

d <
4
√

N

3
≈ 770.6.

8.3 Extended Diophantine Attacks

Wiener’s Diophantine attack on short RSA private exponent d applies to the
case that

d < N0.25,

or more precisely,

196 8. Private Exponent Attacks

d <
1
3
N0.25.

About 10 years later, Boneh and Durfee [38] improved Wiener’s method by
showing that RSA is insecure for any

d < N0.292.

Tha is,

{e,N} P−−−−−−−−−−→
d < N0.292

{d}. (8.9)

For example, when N = 160523347, d < 1605233470.292 ≈ 248.89, and when
N = 28562942440499, d < 285629424404990.292 ≈ 8493.651934 are not se-
cure. Their idea is as follows.

Let d < N δ. Notice first that

1 = ed +
kφ(N)

2

= ed + k

(
N + 1

2
− p + q

2

)

= ed + k(x + y)

Then finding d is equivalent to find the two small solutions x and y to the
congruence

f(x, y) ≡ k(x + y) ≡ 1 (mod e).

Letting

s = −p + q

2
, A =

N + 1
2

,

then
k(A + s) ≡ 1 (mod e).

Let e = Nα for some α. So α is close to 1, as e is in the same order of the
length of N . As d is small, so

|s| < 2
√

N = 2e1/(2α) ≈ √
e,

and
|k| < 2ed

φ(N)
≤ 3ed

N
< 3e1+ δ−1

α < eδ

By taking α ≈ 1 and ignoring small constants, we end up with the following
small inverse problem [38]: finding integers k and s such that

k(A + s) ≡ 1 (mod e), (8.10)

where
|s| < e0.5 and |k| < eδ.

8.3 Extended Diophantine Attacks 197

Given δ = 0.5, one can list efficiently all solutions to the small inverse prob-
lem, thus RSA with d < N δ is not secure, which is essentially Wiener’s result
[324]. What Boneh and Durfee [38] has shown is that whenever

δ < 1− 1
2
≈ 0.292

all small solutions to (8.10) can be efficiently calculated. This implies that
for δ = 0.292, RSA with d < N δ is not secure. Boneh and Durfee admitted
that this attack cannot be stated as a theorem, as they were unable to prove
that it will always success, but they also could not find a counterexample
that the attack failed. It is interesting to note that Steinfeld et al showed in
[306] that a subexponential-time attack on RSA with private key d > N0.25

cannot be obtained just by using Wiener’s approach. So, the lattice-based
attacks of [38] for d < N0.292 with heuristically succeed in polynomial-time
is currently an interesting open problem.

It is reasonable to conjecture that

Conjecture 8.3.1. Let N = pq and d < N0.5. Then given (e,N) Eve can
efficiently compute d.

Of course, to prove or disprove this conjecture, some deep ideas and so-
phisticated techniques from mathematics will be needed.

Remarkable enough, Wiener’s Diophantine attack on short RSA private
exponent d can be naturally extended to other RSA-type cryptosystems.
For example, Pinch [237] observed that Wiener’s attack can be extended to
cryptosystems based on groups whose order modulo p is closed to p such
as the LUC cryptosystem [305] and the elliptic curve cryptosystems ECC
(e.g., KMOV [180] and Demytko [98]). The encryption and decryption of a
simplified version of LUC can be described as follows (other simplified version
of LUC can be found in [205]):

[1] Encryption: Let M be the original message and write

µ ≡ M +
√

M2 − 1

as the plaintext. Then the message is encrypted by writing:

µe ≡ C +
√

C2 − 1

[2] Decryption: The decryption is then by using d in the following way:

µed ≡ Cd +
√

(Cd)2 − 1

where d is one of the four values satisfying

ed±± ≡ 1 (mod lcm(p± 1, q ± 1))

198 8. Private Exponent Attacks

according to the Jacobi symbols
(

M2 − 1
p

)
=

(
C2 − 1

p

)

(
M2 − 1

q

)
=

(
C2 − 1

q

)

Fixing the sign for the two Jacobi symbols and putting

ed = 1 +
k

h
(p± 1)(q ± 1)

where
h = lcm(p± 1, q ± 1)

then we have
e

N
− k

hd
=

k

hd

(
1
N
± 1

p
± 1

q

)
+

1
dN

so, e
N will have k

hd as its continued fraction expansion, same as that in
Wiener’s attack on RSA. Pinch also showed that Wiener’s attack can be
naturally extended to attack elliptic curve cryptosystems such as KMOV
[180] and Demytko [98]. Interested readers are suggested to consult Pinch’s
original paper [237].

8.4 Small Private CRT-Exponent Attacks

To speed up the computation in RSA encryption and signature verification,
public exponents e are often chosen to be small, for example, e = 3, 17 and
65537. However, the private exponent d should never be small. This makes
the decryption and the signature generation slow. Luckily, there is a way to
speed up the computation in d related exponentiations by using the Chinese
Remainder Theorem (CRT).

Theorem 8.4.1. Let N = pq with p and q prime numbers. Suppose

Mp ≡ Cd (mod p) ≡ Cd (mod p−1) ≡ Cdp (mod p− 1), (8.11)

and

Mq ≡ Cd (mod q) ≡ Cd (mod q−1) ≡ Cdq (mod q − 1). (8.12)

Then

M ≡ Cd (mod N) (8.13)

can be computed by the following formula:

M ≡ (Mp · q · q−1 mod p + Mq · p · p−1 mod q) (mod N) (8.14)

8.4 Small Private CRT-Exponent Attacks 199

Note that the dp, dq defined by

dp ≡ d (mod p− 1) (8.15)

dq ≡ d (mod q − 1) (8.16)

in (8.11) and (8.12) are called the RSA CRT-private exponents.

Example 8.4.1. Let

e = 9007,

M = 200805001301070903002315180419000118050019172105011309
190800151919090618010705,

N = 114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541.

C = 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154 (mod N).

For decryption, since in any case, (p, q) and d are known to the authorized
person who does the decryption:

p = 34905295108476509491478496199038981334177646384933878
43990820577,

q = 32769132993266709549961988190834461413177642967992942
539798288533.

Thus, instead directly using Algorithm 1.3.5 to do the exponentiation Cd mod
N with a large (d,N), we make a combined use of the Chinese Remainder
Theorem (2.15) and Algorithm 1.3.5 on Cdp mod p and Cdq mod q with small
(d1, d2, p, q), compared to (d,N), as follows:

Mp ≡ Cdp ≡ Cd (mod p−1) (mod p)
= 655836613815976230413021134466880014757055030407533996250
= 695585

Mq ≡ Cdq ≡ Cd (mod q−1) (mod q)
= 272394108546908412756683639303179381441152113513972196544
= 60909824

Thus,

M ≡ Mp mod p

M ≡ Mq mod q

200 8. Private Exponent Attacks

Using CRT, we get:

M ≡ (Mp · q · q−1 mod p + Mq · p · p−1 mod q) (mod N)
≡ 672134758233596478551589384411010494146167032256442465

026250844575043059188551752670002708230223214380659333
96810355797687889184 +
4716814993452921981407684153504556259560159349559831686
4938059549105631642059141563714902760108488632232332550
940853319809665062

≡ 200805001301070903002315180419000118050019172105011309
190800151919090618010705 (mod N)

So, we have done, and the plaintext is:

THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE.

Remark 8.4.1. Exponentiation by a combined use of CRT and Algorithm
2.3.1 on Cdp mod p and Cdq mod q is four time faster than the direct use of
Algorithm 2.3.1 on Cd mod N . First note that computing both Mp ≡ Cdp

and Mq ≡ Cdq require half as many multiplications as computing M ≡ Cd

directly. In addition, all intermediate values during the computation of
Mp ≡ Cdp and Mq ≡ Cdq are only half as big as that would be in com-
puting M ≡ Cd, as they are in the range [1, p] rather than [1, N]. When
quadratic time complexity is considered for multiplications (faster algorithm
for multiplication exists, but for all practical purposes, quadratic time com-
plexity is sufficient), multiplying two numbers in Zp takes 1/4 the time as
multiplying two numbers in ZN . Hence, computing Mp takes 1/8 the time of
computing M directly, and computing Mq also takes 1/8 the time of com-
puting M directly, so computing both Mp and Mq takes 1/4 of the time
of computing M directly. Thus, CRT exponentiation is four time fast than
direct exponentiation. Note that the final CRT exponentiation step

M ≡ (Mp · q · q−1 mod p + Mq · p · p−1 mod q) (mod N)

takes negligible time since it only needs to be done once and for all!

RSA decryption and signature verification with CRT are four time faster
than standard RSA, because they are working modulo p and q rather than
N = pq. However, there is a very efficient attack on RSA with CRT when dp

and dq are small due to [157].

Theorem 8.4.2. (Efficient Attack on RSA-CRT for small dp, dq [157]).
Let N = pq be a β-bit RSA modulus with p and q primes of β/2 bits. Let
e < φ(N), dp < p−1 and dq < q−1 be the public and private CRT-exponents,
respecyively, satisfying

8.5 Partial Private Key Exposure Attacks 201

edp ≡ 1 (mod p− 1)

and
edq ≡ 1 (mod q − 1).

Let also bitsize(dq) < δβ. Then N can be factorized in time polynomial in
log N , provided that

δ < 0.073− ε.

The proof of the above theorem is based on a well-known heuristic as-
sumption; interested readers are advised to consult the original paper [157].
What this theorem says is that there is a polynomial-time attack on RSA
with private CRT-exponents

dp, dq < N0.073.

In other words, N can be factorized in polynomial-time if dp, dq < N0.073.
That is,

Corollary 8.4.1.

{e,N} P−−−−−−−−−−−−→
dp,dq < N0.073

{p, q}. (8.17)

8.5 Partial Private Key Exposure Attacks

Let (d, p, q) with pq = N be the RSA private information. Suppose by some
means say e.g., from side-channels, the cryptanalyst, Eve, is able to expose
a fraction of the bits of d, or p, or q (from an information-theoretic point of
view, this reduces the key entropy [321]), it is possible for Eve to find the
rest of the bits of d, or p, or q. The first significant result in partial private
key exposure attacks is due to Coppersmith in 1997 [78].

Suppose N = pq and the β/4 most significant bits (Coppersmith called
these bits as high-order bits) of p are known. Then by division the β/4 most
significant bits of p is also known. Set

p = p0 + x0

q = q0 + y0

where p0 and q0 are known but p, q, x0, y0 are unknown. Define the bounds
X, Y for x0, y0 as follows:

202 8. Private Exponent Attacks

X = p0N
−1/4 > |x0|

Y = q0N
−1/4 > |y0|

Define the polynomial p(x, y) as follows:

p(x, y) = (p0 + x)(q0 + y)−N

= q0x + p0y + xy + (p0q0 −N).

One integer solution of p(x, y) = 0 is given by (x0, y0), namely,

p(x0, y0) = pq −N.

Now we need a Lemma also due to Coppersmith:

Lemma 8.5.1. Let p(x, y) be an irreducible polynomial in two variables over
Z, of maximum degree δ in x and y, respectively. Let X, Y be the bounds on
the desired solution (x0, y0). Define p̃(x, y) = p(xX, yY) and let W be the
absolute value of the largest coefficient of p̃.

(1) If
XY < W 2/(3δ)−ε2−148/3,

then in time polynomial in (log W, δ, 1/ε), all integer solutions (x0, y0)
with p(x0, y0) = 1, |x0| < X, and |y0 < Y | can be found.

(2) If
XY ≤ W 2/(3δ)

then in time polynomial in (log W, 2δ), all integer solutions (x0, y0) with
p(x0, y0) = 1, |x0| < X, and |y0 < Y | can be found.

we have

W = max
ij

(|pij |XiY j)

= max(|p0q0 −N |, q0X, p0Y, XY)

= N3/4

and

XY = p0q0N
−1/2

≈ N1/2

= W 2/(3δ)

which gives the following theorem:

8.5 Partial Private Key Exposure Attacks 203

Theorem 8.5.1 (Coppersmith).] Let N = pq be a β bit RSA modulus
such that the prime p is about β/2 bits. Then given the β/4 most significant
bits of p, one can factor N in polynomial-time.

Similarly, if the β/4 least significant bits of p is given, one can also find
factor N in polynomial-time:

Theorem 8.5.2. Let N = pq be a β bit RSA modulus such that the prime
p is about β/2 bits. Then given the β/4 least significant bits of p, one can
factor N in polynomial-time.

Interested reader should consult [78] for the full justification of the above
two theorems; these two theorems can in fact be conveniently combined into
one single theorem as follows:

Theorem 8.5.3 (Coppersmith [78]). Let N = pq be a β bit RSA mod-
ulus such that the prime p is about β/2 bits. Then given either the β/4
least significant bits of p, or the β/4 most significant bits of p, there is a
polynomial-time algorithm to find the prime factorization of N = pq.

Remark 8.5.1. Rivest and Shamir [265] showed in 1986 that N can be
efficiently factorized if the β/3 of the bits of p are given. Note also that
Lehmer [184] in 1907 showed that if |p − q| < 2N1/4 is given, N can be
efficiently factorized. Thus, Coppersmith’s result is significantly better than
the previous results.

The next theorem, due to Boneh et al [39], shows that if the public ex-
ponent e is sufficiently small, then given a few of the bits of d, all of the d
can be found in polynomial-time. As this attack requires e to be sufficiently
small, one may also consider this attack as a short public exponent e attack.

Theorem 8.5.4 (BDF [39]). Let N be a β bit RSA modulus. Then given
the β/4 least significant bits of d, one can find all of the d in time O(e log e).

Proof. For N = pq and ed ≡ 1 (mod φ(N)), there is an integer k such that

ed− kφ(N) = ed− k(N − p− q + 1) = 1.

Since d < φ(N), then 0 < k ≤ e. Multiply the equation by p, set q = N/p
and reduce the equation modulo 2β/4, we get:

p(ed)− kp(N − p + 1) + kN ≡ p (mod 2β/4).

In this congruence, the cryptanalyst, Eve, knows (N, e) and the β/4 least
significant bits of d, therefore, she knows the value of ed modulo 2β/4. Con-
sequently, she obtains an equation in k and p. For each of the e possible
values of k, Eve solves the quadratic equation in p, and obtaines a number
of candidate values for p modulo 2β/4. For each of these candidate values of

204 8. Private Exponent Attacks

p (although she is not sure which one is), she runs an algorithm of Theorem
8.5.3 to attempt to factor N . It can be shown that there are no more than
e log2 e candidate values for p modulo 2β/4. Hence, after at most e log2 e at-
tempts, N can be factored.
2

Remark 8.5.2. To defend against the partial private key exposure attack,
keep the entirety of d secure, and try not to use small public exponent e,
since if small e is used, the RSA system leaks half of the most significant bits
of the corresponding private exponent d [37].

Example 8.5.1. Let N = 1633 = 23 · 71 and e = 23 = (11001100001)2 with
11 binary bits. Suppose Eve by some way knows 3 least significant bits of d,
then by Theorem 8.5.4, she can find both d and the factorization of N . Now
suppose that the three known bits are 011, which is 3 in decimal, and we let
d0 = 011. Then Eve does the following:

[1] As
ed0 ≡ 1 + k(N − s + 1) (mod 2n/4)

where s = p + q, thus,

23 · 3 ≡ 1 + k(1633− s + 1) (mod 23)
=⇒ 69− 1 ≡ k(1633− s + 1) (mod 8)
=⇒ 4 ≡ k(1633− s + 1) (mod 8)
=⇒ s ≡ 6 (mod 8).

[2] Eve then solves the quadratic polynomial equation:

p2 − sp + N ≡ 0 (mod 2n/4)
=⇒ p2 − 6p + 1633 ≡ 0 (mod 23)
=⇒ p2 − 6p + 6 ≡ 7 (mod 23)
=⇒ p = 7,

p = 3.

[3] Let p0 ≡ 7 ≡ p (mod 8) and q0 ≡ q (mod 8). Then

p0q0 ≡ 1633
=⇒ 7q0 ≡ 1 (mod 8)
=⇒ q0 ≡ 7 (mod 8).

8.6 Chapter Notes and Further Reading 205

[4] Create and solve the polynomial equation

f(x, y) = 0
=⇒ (rx + p0)(ry + q0)−N = 0
=⇒ (8x + 7)(8y + 7)− 1633 = 0
=⇒ x = 2,

y = 8
=⇒ p = 8 · 2 + 7 = 23,

q = 8 · 8 + 7 = 71.

[5] Find d

ed− kφ(N) = 1
=⇒ 23d− (23− 1)(71− 1) = 1
=⇒ 23d− 1540k = 1
=⇒ d = 67.

So, d = 67. Hence, any message using the given (N, e) = (1633, 23 as
encryption key can be decrypted by using the computed private exponent
d = 67.

8.6 Chapter Notes and Further Reading

The attacks directly related to the private exponent d are the most important
attacks on RSA, since once d is found, any ciphertext using d for decryption
can be broken. Much attention is of course given to find the d corresponding
to the e. In this chapter, several attacks, such as the Diophantine attack, the
lattice attack, and the CRT attack are discussed. These attacks all have the
same objective. In quantum attacks, factoring attacks and discrete logarithm
attacks, one essentially tries to find d using brute force approach. Whereas
in the attacks discussed in this chapter one tries to find d using some special
mathematical methods. These attacks work well for some special improper
use and improper implementation of RSA. The Diophantine attack for small d
was first studied by Winer in [324], and subsequently improved by Boneh and
Durfee [38]. Lattice attacks are powerful methods for breaking RSA in some
cases and have been studied by many authors, particularly Coppersmith [78].
In RSA encryption and signature verification, the public exponent e some
times can be chosen to be small. However, the private exponent d should
never be small. This means in RSA, the decryption and digital signature

206 8. Private Exponent Attacks

generation can be very slow, since d is large. There is a way to speed up the
computation in d related exponentiations by using the Chinese Remainder
Theorem (CRT), but there is a risk in using such a speeding method, since it
may enable the enemy to discover the prime factors p and q of N if there is
an unexpected error in the computation of the Chinese Remainder Theorem
process. Thus, whenever possible, we should try to avoid the use of such CRT
speeding-up techniques. For an enemy cryptanalyst, it may also be possible
to discover d even by knowing a small portion of the bits of d. Thus, all bits
of d should always be kept in a safe place.

There are many papers on the RSA short private exponent d attacks,
with Winer’s [324] being the first. Interested readers are advised to con-
sult the following references for more information: Ernst et al [107], Hinek
([141] and [142]), Blöm and May [34], Boneh [37], Boheh and Venkatesan [40],
Boneh and Durfee [38], Coron [83], Kim and Quisquater [167], Pfitzmann and
Waidne [240], Stamp and Low [310], Steinfeld et al [306], and Yen at al [338].
Misarsky [214] proposed a multiplicative attack using the LLL algorithm on
RSA signatures with redundancy.

9. Side-Channel Attacks

The development of cost-effective and efficient countermeasures to
side-channel attacks is an ongoing research problem that is bing tack-
led by both cryptographers and engineers.

Neal Koblitz and Alfred J. Menezes
A Survey of Public-Key Cryptography [177]

9.1 Introduction

In the previous chapters, we have investigated two main types of mathemati-
cal and algorithmic attacks on RSA: direct (brute-force) attacks on the RSA
modulus N including factoring, discrete logarithm and quantum attacks, and
indirect attacks on RSA parameters N, e, d, φ(N), C including common mod-
ulus attacks, fixed-point attacks, and short exponent e and d attacks. A com-
mon feature of these attacks is that they are all directly on the RSA algorithm
or more generally the RSA system, particularly the weakness of the algorithm
and the system. There is, however, a large class of attacks, which are not di-
rectly on the RSA algorithm or the system itself. That is, they do not try to
factor the modulus N and also do not exploit any inherent weakness issues
of the RSA algorithm and system itself. Instead, they exploit specific imple-
mentation issues on a particular computing device, for example, a smartcard
or a computer, that allow the secret information, i.e., the private exponent
d to leak. These attacks are usually referred to as side-channel attacks or
implementation attacks; they include but are not limited to timing attacks
and power attacks. These attacks, although originally developed and applied
for hardware security tokens such as smartcards, are applicable to general
purpose hardware and software, as soon as the computing time is dependant
on the implementation or execution. For example, Brumley and Boneh [58]
developed some timing attacks on the general purpose web servers, OpenSSL
server, since the OpenSSL’s implementation of RSA is based on using the

208 9. Side-Channel Attacks

Chinese Remainder Theorem and Montgomery reduction, which are vulnera-
ble to the timing attacks. Furthermore, Bortz et al [42] even showed that by
timing the web sites to take the response to HTTP requests, the client’s pri-
vate information can be leaked. More importantly, the side-channel attacks
are practical and efficient. Thus, a secure network system must be timing
attack resistant. In this chapter, we shall study various approaches to the
side-channel attacks on RSA, particularly the time and power attacks.

9.2 Modular Exponentiation Revisited

The modular exponentiation:

x 7→ xk mod N

is the most fundamental operation in RSA encryption and decryption as well
as RSA signature generation and verification. Now suppose given C, d, N , we
want to do the RSA decryption:

M ≡ Cd (mod N).

Let

d =
β∑

i=0

di2i = dβdβ−1 · · · d2d1d0

be the binary representation of d. Then the RSA decryption can be imple-
mented by one of the following two algorithms.

The first algorithm performs the repeated squaring according to the bi-
nary bits of d beginning from the least significant bit to the most significant
bit.

Algorithm 9.2.1. (Fast exponentiation by repeated squarings and multipli-
cations beginning from the least significant bit)

Input C and N
Let d = dβdβ−1 · · · d2d1d0

M ← 1
for i from 0 to β do

If di = 1 then M ← M · C (mod N)
C ← C2 (mod N)

Print M

Or, equivalently and more conveniently,

9.3 Timing Attacks 209

Input d, C and N
M ← 1
While d ≥ 1 do

If d mod 2 = 1 then M ← M · C (mod N)
C ← C2 (mod N)
d ← bd/2c

Print M

The second algorithm performs the repeated squaring according to the
binary bits of d beginning from the most significant bit down to the least
significant bit.

Algorithm 9.2.2. (Fast exponentiation by repeated squarings and multipli-
cations beginning from the most significant bit)

Input C and N
Let d = dβdβ−1 · · · d2d1d0

M ← 1
for i from β down to 0 do

C ← C2 (mod N)
If di = 1 then M ← M · C (mod N)

Print M

Note that these two algorithms for modular exponentiations can be ex-
tended to the group operations on elliptic curves

Q ≡ kP (mod N)

where P and Q are points on elliptic curve E : y2 = x3 + ax + b over Zn.
Just the same as modular exponentiations in RSA cryptography, the elliptic
curve group operations are the most fundamental operations in Elliptic Curve
Cryptography (ECC).

Now let us move on to the next section on the discussion of implemen-
tation attacks on RSA where the modular exponentiation plays a significant
role.

9.3 Timing Attacks

In 1995, Kocher [178], then an undergraduate student at Stanford University,
surprised the cryptographic world by proposing a completely different new
attack on RSA to get the private exponent d without factoring N . The attack
is nothing to do with the RSA algorithm/system itself, rather, it has some-
thing to do with the hardware implementation of the RSA algorithm/system.

210 9. Side-Channel Attacks

Kocher noticed that by measuring the time taken by the hardware (e.g., a
smartcard or a computer) to perform the RSA decryption or signature that
uses the modular exponentiation algorithm, it is possible to find the private
exponent d without factoring N by using some knowledge of probability and
statistics. The idea is as follows. The attacker first observes k, measuring the
time Ti taken by the victim to compute each Mi for i = 1, 2, · · · , k as follows:

M1 ≡ Cd
1 (mod N) with time T1,

M2 ≡ Cd
2 (mod N) with time T2,

...
...

Mk ≡ Cd
k (mod N) with time Tk,

provided that the attacker knows (Ci, N) and the victim uses Algorithm
9.2.1 to implement the RSA decryption. The attack will allow somebody
who knows the exponent d0, d1, · · · , ds−1 to find the bit ds; to obtain the
entire exponent d, start from d0, repeat the attack until the entire exponent
d = d0, d1, · · · , ds−1, ds, · · · , dβ is known. Now, we start from d0, the least
significant bit of d. Since d is odd, we know that d0 = 1. At this stage, we
have:

d0 = 1, M ≡ C, C ≡ C2 (mod N).

Next, we consider d1. If d1 = 1, then the victim will need to compute one
modular multiplication and one modular squaring:

M ← M · C (mod N), C ← C2 (mod N)

So, at this stage, we have:

d0 = 1, M ≡ C, C ≡ C2 (mod N)
d1 = 1, M ≡ M · C ≡ C3 (mod N), C ≡ C4 (mod N).

However, if d1 = 0, then the victim will only need to compute one modular
squaring without doing the modular multiplication:

C ← C2 (mod N)

So, at this stage, we have:

d0 = 1, M ≡ C, C ≡ C2 (mod N)
d1 = 0, M ≡ C, C ≡ C4 (mod N).

Let ti be the time it takes the hardware to compute Mi ·Ci ≡ Mi ·M2
i (mod

N). Of course, the ti’s different from each other, since the time to calculate
Mi ·M2

i (mod N) depends on the values of Mi, and also, the attacker does
not yet know whether or not this multiplication actually occurs.

9.3 Timing Attacks 211

To give a formal analysis of the timing attack, we need some basic concepts
from probability theory [268]. Suppose we have a random process (algorithm)
that produces real numbers u as output where u is the amount of time it takes
the computer to perform a calculation for a given input. If we record outputs
u1, u2, · · · , uk for a given input, then the mean (average, expected value) m
is the average of these outputs:

m =
1
k

k∑

i=1

ui. (9.1)

The variance of the {ui} is defined to be:

var
({ui}k

i=1

)
=

1
k

k∑

i=1

(ui −m)2, (9.2)

and the standard derivation is the square root of the variance
√

var({ui}k
i=1).

The important fact we need in our analysis is that when the random process
{ui} is independent of other random process {vi}, the variance of the sum of
their outputs is the sum of variances of the two processes:

var
({ui}k

i=1

)
+ var

({vi}k
i=1

)
= var

({ui}k
i=1 + {vi}k

i=1

)
. (9.3)

The most interesting thing Kocher observed is that when di = 1, {ti} and
{Ti} are correlated; if for some i, ti is larger than its expected value, Ti is
also likely to be larger than its expected value. On the other hand, if di = 0,
{ti} and {Ti} behave as independent random variables. Let t′i = Ti − ti.
The attacker computes var

({Ti}k
i=1

)
and var

({t′i}k
i=1

)
. Thus, if di = 1 then

var
({Ti}k

i=1

)
> var

({t′i}k
i=1

)
, which is so, because

var
({Ti}k

i=1

)
= var

({ti}k
i=1

)
+ var

({t′i}k
i=1

)
> var

({t′i}k
i=1

)
. (9.4)

However, if di = 0, then (9.4) will fail to hold. Hence, the attacker can
determine d1. Continuing the process this way, the attacker will eventually
find d2, d3, · · · , dβ , the entire exponent d.

Remark 9.3.1. When a short e is used, it is not necessary to use the time
attack to find all the bits of d; only about 1/4 of the bits of d are needed,
since by using the 1/4 bits of d, the partial key exposure attack discussed in
Section 8.5, the attacker can discover all of the bits of d.

Kocher showed in [178] that the probability that a guess dj for the first j
bits of d is correct is proportional to

Prob(di) ∝
k∏

i=1

F (Ti − t(Ci, dj)) (9.5)

212 9. Side-Channel Attacks

where C1, C2, · · · , Ck are the ciphertext, T1, T2, · · · , Tk are the corresponding
timing measurements for decrypting C1, C2, · · · , Ck, t(Ci, dj) is the amount of
time required for the first j iterations of the M ≡ Cd

i (mod N) computation
using the exponent dj , and F is the expected probability distribution function
of T − t(C, dj) over all C values and the correct dj . Given a correct guess for
dj−1, there are two possible values for dj . The probability that dj is correct
and d′j is incorrect can be found as

k∏
i=1

F (Ti − t(Ci, dj))

k∏
i=1

F (Ti − t(Ci, dj)) +
k∏

i=1

F (Ti − t(Ci, d′j))
(9.6)

A possible defense to the timing attack, suggested by Rivest [163], is as
follows:

Algorithm 9.3.1 (Anti-Timing Attack). RSA Blinding.

[1] Generate a secret random number r ∈ Z∗N .

[2] Compute C ′ ≡ Cre (mod N).
[3] Compute M ′ ≡ (C ′)d (mod N).
[4] Compute M ≡ M ′r−1 (mod N).

Theorem 9.3.1 (Correctness of Theorem 9.3.1). M ≡ M ′r−1 (mod
N).

Proof. Theorem 9.3.1 is correct since

M ′r−1 ≡ (C ′)dr−1

≡ (Cre)dr−1

≡ Cdredr−1

≡ M (mod N).

2

9.4 Time Attacks on RSA in OpenSSL

SSL (Secure Sockets Layer) is one of the most popular systems securing the
web. For example, when you see your web browser’s application protocol
changing from http to https, then all the cryptographic operations that com-
prise SSL are operated on your behalf to enhance the security of your data
transfers between you and the server. OpenSSL, where RSA is embedded in,

9.4 Time Attacks on RSA in OpenSSL 213

is a full-strength, general purpose cryptography library for SSL (version 2
and version 3) and TLS (version 1). To perform the decryption

M ≡ Cd (mod N),

in OpenSSL, it uses the Chinese Remainder Theorem (CRT) for fast compu-
tation. With CRT, M ≡ Cd (mod N) is computed in two steps:

[1] Compute

M1 ≡ Cd1 (mod p),

M2 ≡ Cd2 (mod q).

}
(9.7)

[2] Use CRT to combine M1 and M2 to get M .

Although RSA with CRT is not vulnerable to Kocher’s original time attack,
time attacks on the exponentiation can be used to expose the factors of N ,
since RSA with CRT uses the factors p and q of N in its fast exponentiation as
described in (9.7). Note that OpenSSL uses an optimization technique, called
sliding windows, for the square and multiply operation. That is, when the
sliding windows technique is used, a block of bit (in fact, 5 bits) of d, rather
than only one bit of d in the conventional square and multiply technique,
are processed at each of the iterations. Note also that the sliding windows
exponentiation technique performs a modular multiplication at each step,
using the Montgomery reduction technique, which transforms a reduction
modulo e.g., p into a reduction modulo some powers of 2, denoted by R, since
a reduction modulo some powers of 2 is faster than a reduction modulo q, as
many arithmetic operations can be directly implemented in hardware, but of
course, before using Montgomery reduction all variables must be written in
Montgomery form, which is just xR mod p for x. To perform, e.g., c = ab in
Montgomery form, just do:

aR · bR = cR2,

cR2 ·R−1 ≡ cR (mod p),

cR ·R−1 ≡ c (mod p).

The last step above is just get back the stand form from the Montgomery
form. More information on Montgomery reduction can be found in [219].
In what follows, we give a brief introduction to the Brumley-Boneh time
attack on RSA with CRT in OpenSSL (see [58] and [310] for more detailed
information).

214 9. Side-Channel Attacks

Algorithm 9.4.1 (Time Attack on RSA with CRT in OpenSSL).
Let N = pq be the RSA modulus. This algorithm tries to find the bit
information of the prime factor, say, e.g., p of N , since once p is found, d
can be easily calculated by

d ≡ 1/e (mod (p− 1)(q − 1)).

Let p have β bits, i.e.,

p = (p0, p1, p2, · · · , pβ−1)2.

Clearly, it is not necessary to use the time attack to find all the bits of p; only
about β/2 of the bits of p are needed, since by Theorem 8.5.1, using these
β/2 bits of p, N can be efficiently factorized.

[1] Let the bits p1, p2, · · · , pi−1 of p have been determined. Let P1 represents
the most significant bits (high bits) of p, respectively, with the remaining
bits set to 0. That is,

P1 = (p0, p1, · · · , pi−1, 0, 0, · · · , 0).

Let also the ith bit of p set to 1. That is,

P2 = (p0, p1, · · · , pi−1, 1, 0, · · · , 0).

If the unknown bit pi is 1, then

P1 < P2 ≤ p,

otherwise,
P1 ≤ p < P2.

[2] Let T (P1) and T (P2) be the computing time for P1 and P2, respectively.
Let also

∆ = |T (P1)− T (P2)|.
[3] If P1 < p < P2, then ∆ will be large, and hence the bit pi of p will be 0.

If P1 < P2 < p, then ∆ will be small, and hence the bit pi of p will be 1.
[4] Repeat the process in order to find successively the

pi+1, pi+2, pi+3, · · ·
until half of the bits of p are found, then p and q can be computed by
Theorem 8.5.1.

There are of course several possible defenses for such a time attack on the
RSA with CRT in OpenSSL; one of them is the blinding technique discussed
in the previous section. Thus, OpenSSL should have, as it has already been
implemented, blinding as its default operation to resist such time attacks.

9.5 Power (Analysis) Attacks 215

Noted that Bortz, Boneh and Nangy [42] recently developed two different
types of time attacks for exposing private information by timing the web
applications. Surprisingly, their code (to use an invisible image and JavaScript
to take several timing samples of the same or different pages sequentially) is
extremely simple:

<html><body>
<script>

var test = document.getElementById(’test’);
var start = new date();
test.onerror = function() {
var end = new date();
alert("Total time: " + (end - start));

}
test.src = "http://www.example.com/page.html";

</script>
</body></html>

Interestingly, as the authors pointed out, these side-channel attacks are often
ignored by web developers. Hence, future web applications should resist such
attacks.

9.5 Power (Analysis) Attacks

A similar attack, called the power (analysis) attack, is by careful measuring
the power consumption of a hardware device, say, a smartcard, during the
computation of the RSA decryption or digital signature generation, in order
to deduce the bit information of d. It works since during multiplication the
computer’s power consumption is necessarily higher than that for squaring.
Hence, if the cryptanalyst measures the length of these high consumption
episodes she can easily deduce the bits of d, just the same as measuring the
time in the time attack. In what follows, we give an example of a power attack
on the RSA signature scheme [176], in the same setting as the time attack
in the previous section. Suppose the smartcard generates the signature as
follows:

Input d, H and N
S ← 1
While d ≥ 1 do

If di = 1 t
then S ← S ·H mod N

H ← H2 mod N

216 9. Side-Channel Attacks

d ← bd/2c
print S

As the power consumed by a modular squaring is less than that by a modular
multiplication, by the careful measurement of the power consumption on the
cryptographic operations in the algorithm, the sequence of multiplication and
squaring can be revealed and hence, the binary string of d can be discovered
(i.e., d can be found). Again, this attack can be thwarted by inserting some
dummy operations so that at each iteration of the loop there are one modular
squaring and one modular multiplication, as follows:

Input d, H and N
S0 ← 1
While d ≥ 1 do
for i from 0 to β do

S1 ← S0 ·H mod N
S0 ← Sdi

H ← H2 mod N
d ← bd/2c

Print S0

Remark 9.5.1. This anti-power attack process decreases the efficiency of
the signature generation. Moreover, it may still allow some other side-channel
attacks. Old attacks are thwarted, but new attacks may still come. The attack
and anti-attack are endless processes.

Remark 9.5.2. The idea of power (analysis) attacks can be generalized to,
for example, electromagnetic (analysis) attacks and template attacks [8].

9.6 Random Fault Attacks

As we discussed in Section 8.4 of the previous chapter, RSA decryption and
signature verification with CRT are four time faster than standard RSA,
which is specifically and helpful and useful for smartcards and systems-on-
chip technologies. But unfortunately, it is susceptible to software and hard-
ware errors and an attack, in fact, a very simple attack, enables the crypt-
analyst to factor N , and hence break the system completely. The idea of
the attack is based on obtaining two signatures of the same message: one
is correct, the other in incorrect. Suppose the smartcard first computes the
hashing function h(M) of the message M to produce the document H for
signature:

H = h(M)

9.6 Random Fault Attacks 217

Then the card computes

Sp ≡ Hdp ≡ Hd mod p−1 (mod p) (9.8)

Sq ≡ Hdq ≡ Hd mod q−1 (mod q). (9.9)

The final signature is computed by using CRT as follows:

S ≡ (Sp · q · q−1 mod p + Sq · q · q−1 mod q) (mod pq). (9.10)

Now suppose that there is an error in the computation of either Sp or Sq so
that one of the values for Sp and Sq is wrong; the wrong values are denoted by
S̃p or S̃q. In any one of the two wrong cases, the wrong signature S̃ (instead
of the correct S) is obtained. Once the cryptanalyst, say Eve, receives the S̃,
she knows it is wrong since

S̃ 6≡ H (mod N).

If Sp is wrong, then

S̃e 6≡ H (mod p) (9.11)

S̃e ≡ H (mod q) (9.12)

therefore, by computing

q = gcd(Se −H, N) (9.13)

the factor q of N was found. However, if Sq is wrong, then

S̃e ≡ H (mod p) (9.14)

S̃e 6≡ H (mod q) (9.15)

therefore, just by computing

p = gcd(Se −H, N) (9.16)

Eve finds the factor p of N . In what follows, we present a complete example
of this attack.

218 9. Side-Channel Attacks

Example 9.6.1. Let

e = 9007,

H = 200805001301070903002315180419000118050019172105011309
190800151919090618010705,

N = 114381625757888867669235779976146612010218296721242362
562561842935706935245733897830597123563958705058989075
147599290026879543541.

p = 34905295108476509491478496199038981334177646384933878
43990820577,

q = 32769132993266709549961988190834461413177642967992942
539798288533,

d = 106698614368578024442868771328920154780709906633937862
801226224496631063125911774470873340168597462306553968
544513277109053606095.

Then

dp ≡ d (mod p− 1)
= 728566168579280979726652302144923780484667205547637298

401547983

dq ≡ d (mod q − 1)
= 314630245504352730307617712750456780616365334059290

51524833529391

Sp ≡ Hdp (mod p)
= 626691409304511469146953582168207294747043220506363

221769613673

Sq ≡ Hdq (mod q)
= 239609805223914732602211316863299871883839697524918
= 92298428767968

9.6 Random Fault Attacks 219

S1 ≡ (Sp · q · q−1 mod p) (mod N)
883708025919394818509037855308020872961492832980459
614536119803759634744064181105100524778790714781138
42343006423697624858730126

S2 ≡ (Sq · p · p−1 mod q) (mod N)
217131130945912638991822885165014178473013148722592
894082951781397918073776638921361069039244477548457
26707057268781302787092582

S ≡ (S1 + S2) (mod N)
110083915686530745750086074047303505143450598170305
250861907158515755281784082002646159381803519232959
569050063692478927645822708

Once Eve received S, she know this signature is valid, since

Se (mod N) = H

= 200805001301070903002315180419000118050019
172105011309190800151919090618010705.

There is nothing Eve can do in this correct case. Now suppose that an error
was introduced in the computation of Sp (Sq is still correct), causing S̃p =
Sp + 2:

Sp = 626691409304511469146953582168207294747043220506363
221769613675

such that

S1 ≡ (Sp · q · q−1 mod p) (mod N)
4553461138943075310870448649021918709317306038202819
4286060110159454029888178648323673007309629423012449
350713341438023120501425

S ≡ (S1 + S2) (mod N)
672477244840220170078867750067206049404743752542874836
943552882992458372658425404597799112340771778581760577
70610219325907594007

This S is wrong, as Eve is readily to verify that

220 9. Side-Channel Attacks

Se ≡ 962076030324684627234686606888264273958861111803586006
573319913087879625526851856880833162224991329798093947
37425094721643321315 (mod N)

6= H.

Thus, just by computing

gcd(Se −H, N) = 32769132993266709549961988190834461413177642
967992942539798288533

= q.

Eve finds the factor q of N . Alternatively, suppose that an error was intro-
duced in the computation of Sq (Sp is still correct), causing S̃q = Sq + 2:

Sq ≡ 239609805223914732602211316863299871883839697524918
92298428767970

such that

S2 ≡ (Sq · p · p−1 mod q) (mod N)
= 6454930429709999264138158755708431805027753778827705

6575847048356301251895903354322486374493889809947119
699350351040904525321285

S ≡ (S1 + S2) (mod N)
385384811311506068230495931117397933362085243650806554
668971857965577910565875670019417288090025830019729672
09175448502504507870.

This S is wrong, as Eve is readily to verify that

Se ≡ 792824776746527891502170750149025358402189144491040297
879784907214105016613189679197373428694742358579235651
58082511758174165557 (mod N)

6= H.

Thus, just by computing

gcd(Se −H, N) = 34905295108476509491478496199038981334177646
38493387843990820577

= p

Thus, Eve finds the factor p of N and hence all the RSA trap-door one-way
information such as q, φ(N) and d.

9.6 Random Fault Attacks 221

Remark 9.6.1. This attack is useful when Eve has the full knowledge of
H, the document to be signed. However, if a random padding procedure was
used before the signature, the attack can be defeated. Of course, if the signer
can have a check on the correctness of S before before sending the signature
out, the attack can also be defeated; this correctness checking is specifically
useful and helpful when using RSA with CRT.

Remark 9.6.2. This attack for small private CRT-exponent is usually re-
ferred to as random fault attack, this type of attacks also belongs to side-
channel attacks, because it is based on a miscalculation, which is, in turn,
based on either a hardware or software error, known as a glitch, which is not
directly related to the cryptographic algorithm or system itself.

A similar random fault attach is the Bleichenbacher’s attack [32] on
PKCS#1; it is a chosen-ciphertext attack. PKCS stands for Public-Key Cryp-
tography Standard and is the RSA signature and encryption standard devel-
oped by RSA laboratories; a newer version of PKCS#1 is PKCS#1 v2.1 [271].
Let N = pq be a β bit RSA modulus, and M be a γ bit message with β > γ.
Prior to encryption, M is padded in the following way:

02 Random Pad 00 Plaintext Message M

where 02 is the 16 bit initial block indicating that a random pad has been
added to the plaintext M . The results message is β bit long and is used
for RSA encryption. Now suppose that Bob sends a PKCS#1 ciphertext to
Alice, Alice decrypts it, checks the initial block, and throws off the random
pad; if the initial block is not presented, Alice sends back an error message
to Bob saying that “invalid ciphertext”. Bleichenbacher observed that this
error message can lead Eve, the cryptanalyst, to decrypt cyphertexts of her
choice. The idea is as follows.

[1] Bob sends a PKCS#1 ciphertext C to Alice. Eve intercepts a ciphertext
C.

[2] Eve Chooses a random number r ∈ Z∗N , computes

C ′ ≡ rC (mod N),

and sends C ′ to Alice.
[3] Alice receives C ′ and tries to decrypt it.
[4] If Alice does not send an error message back to Bob, Eve learns that the

most significant 16 bits of C ′ are equal to 02.
[5] By accessing a decryption oracle that tests for Eve whether or not the

most significant 16 bits of rC ′ are equal to 02 for any r of his choice, Eve
will be able to decrypt C [32].

Two new attacks to PKCS#1 also exists, due to Coron et al [84], that do not
make use of a decryption oracle, i.e., it is a chosen-plaintext attack against

222 9. Side-Channel Attacks

PKCS#1. The first attack applies to small public exponents whereas the sec-
ond applies for arbitrary public exponents. Interested readers are suggested
to consult [84] for more information.

9.7 Chapter Notes and Further Reading

Time attacks were first proposed by Kocher [178] in 1995, then an under-
graduate student at Stanford University; he conjectured that his technique
can be generalized to attach cryptosystems where the modular exponentia-
tion was computed using more efficient means. Of course, this is not true.
Kocher’s idea was made more practical by Dhem et al [95] and particularly by
Schindler [279] to a more optimized fashion of the modular exponentiation,
i.e., Montgomery’s reduction. It had been pushed even further by Brumley
and Boneh [58], who developed a successful time attack against the highly
optimized RSA with CRT implementation in OpenSSL, and by Bortz et al
[42], who showed that the time web site take to respond to HTTP requests
can leak private information.

Time attacks belong to a wide range of class of attacks, called side-channel
attacks, including power attacks, and the attacks based on electromagnetic
radiation. Normally, all these attacks require some sort of physical access to
machine/hardware, or some special equipment so that the operations on that
device can be detected and measured. Interested readers are suggested to
consult the following references and the references wherein for more informa-
tion: Bortz et al [42], Boscher et al [43], Brier et al [56], Brumley and Boneh
[58], Dhem et al [95], Fouque et al [113], Hachez and Quisquater [134], Kaliski
[163], Klma and Rosa [168], Kocher [178], Kuhn [181], Mangard et al [195],
Mayer-Sommer [198], Messerges et al [209], Naccache and Tunstall [226],
Neuenschwander [230], Sakai and Sakurai [272], Schindler [279], Schindler
and Walter [280], Schindley [275], Stamp and Low [310], and Walter [322].

Recently studies on side-channel attacks lead to a new area, Micro-
Architectural Cryptanalysis (MAC), which studies the effects of common pro-
cessor components on cryptosystem security, as the microprocessor compo-
nents generate easily observable execution (e.g., the footprints or instruction
paths). So, it is very necessary to have some good methods to protect RSA
against such attacks. Interested readers are suggested to consult [1], [2], [3],
and the references therein.

10. The Road Ahead

Cryptography is a never-ending struggle between code makers and
code breakers.

Adi Shamir
The 2002 Turing Award Recipient

10.1 Introduction

To date, RSA is still the most popular and secure public-key cryptographic
system. However, it will become insecure if a practical quantum computer can
be built, or some other advances in integer factorization and cryptanalysis.
As Bill Gates pointed out in [117]:

We have to ensure that if any particular encryption technique proves
fallible, there is a way to make an immediate transition to an alter-
native technique.

So, if one day RSA is proved to be insecure, we have to shift RSA to some
other cryptosystems. Fortunately, there are many alternative cryptosystems
to replace RSA:

(0) Elliptic Curve cryptosystems (ECC), such as the Koblitz system [170],
(1) Coding-Based Cryptosystems (CBC), such as the McEliece system [203],
(2) Lattice-Based Cryptosystems (LBC), such as the Cai-Cusick system [62]

and NTRU [144],
(3) Quantum Cryptography [26],

to name just a few. Note that we regard ECC as alternative 0 to RSA,
since in theory, the levels of the difficulty for breaking ECC and RSA are
almost the same. For example, as we have already discussed in the book, the
quantum attacks are applicable to both RSA and ECC, and Wiener’s attack

224 10. The Road Ahead

for RSA with short e can also be extended to ECC such as KMOV. However,
from practical point of view, for the same level of security, the length for
ECC keys are significantly shorter than that for RSA keys. This makes ECC
particularly useful in wireless communications and smartcards. The other
three types of alternatives can be used as an immediate replacement to RSA
whenever RSA becomes insecure, for example, when a practical quantum
computer becomes available for use. In this chapter, we shall briefly discuss
some of these alternatives to RSA.

10.2 Elliptic Curve-Based Cryptography

In Section 2.5, we discussed some elliptic curve analogues of RSA, whose secu-
rity relies on the intractability of the Integer Factorization Problem (IFP). It
should be noted that the security of the general Elliptic Curve Cryptography
(ECC) does not rely on the intractability of IFP, but on the intractability of
the Elliptic Curve Discrete Logarithm Problem (ECDLP), which is a gener-
alization of the Discrete Logarithm Problem (DLP) on elliptic curve group
E/Fq (over a large finite field), rather then on a multiplicative group Z∗N .
The main feature of ECC is that for the same level of security, the key length
for ECC is shorter than that for other types of public-key cryptosystems such
as RSA. In what follows, we shall introduce an ECC system, due to Menezes
and Vanstone [206].

[1] Key generation: Alice and Bob publicly choose an elliptic curve E over
Fp with p > 3 is prime and a random base point P ∈ E(Fp) such that
P generates a large subgroup H of E(Fp), preferably of the same size as
that of E(Fp) itself. Assume that randomly chosen k ∈ Z|H| and a ∈ N are
secret.

[2] Encryption: Suppose now Alice wants to sent message

m = (m1,m2) ∈ Z∗p × Z∗p (10.1)

to Bob, then she does the following:

[2-1] β = aP , where P and β are public.

[2-2) (y1, y2) = kβ

[2-3] c0 = kP .

[2-4] cj ≡ yjmj (mod p) for j = 1, 2.

[2-5] Alice sends the encrypted message c of m to Bob:

c = (c0, c1, c2). (10.2)

10.3 Coding-Based Cryptography 225

[3] Decryption: Upon receiving Alice’s encrypted message c, Bob calculates
the following to recover m:

[3-1] ac0 = (y1, y2).
[3-2] m =

(
c1y

−1
1 (mod p), c2y

−1
2 (mod p)

)
.

Example 10.2.1. The following is a nice example of Menezes-Vanstone
cryptosystem, taken from [216].

[1] Key generation: Let E be the elliptic curve given by y2 = x3 + 4x + 4
over F13, and P = (1, 3) be a point on E. Choose E(F13) = H which is
cyclic of order 15, generated by P . Let also the private keys k = 5 and
a = 2, and the plaintext m = (12, 7) = (m1,m2).

[2] Encryption: Alice computes:

β = aP = 2(1, 3) = (12, 8)

(y1, y2) = kβ = 5(12, 8) = (10, 11)

c0 = kP = 5(1, 3) = (10, 2)

c1 ≡ y1m1 ≡ 10 · 2 ≡ 3 (mod 13)

c2 ≡ y2m2 ≡ 11 · 7 ≡ 12 (mod 13).

Then Alice sends

c = (c0, c1, c2) = ((10, 2), 3, 12)

to Bob.
[3] Decryption: Upon receiving Alice’s message, Bob computes:

ac0 = 2(10, 2) = (10, 11) = (y1, y2)

m1 ≡ c1y
−1
1 ≡ 12 (mod 13)

m2 ≡ c2y
−1
2 ≡ 7 (mod 13).

Thus, Bob recoveres the message m = (12, 7).

Compared to RSA, ECC requires shorter secret-key than RSA for the
same level of security (see Table 10.1), but of course ECC requires longer
secret-key than AES, since AES is a secret-key cryptosystem.

10.3 Coding-Based Cryptography

In this section, we introduce the most famous code-based cryptosystem, the
McEliece system, invented by McEliece in 1978 [203]. One of the most impor-
tant features of the McEliece system is that it has resisted cryptanalysis to

226 10. The Road Ahead

AES Key Size ECC Key Size RSA Key Size
(bits) (bits) (bits)

163 1024
224 2048

128 256 3072
192 384 7680
256 512 15360

Table 10.1. Key Size Comparison among ECC, RSA and AES

date; it is even quantum computer resisted. The idea of the McEliece system
is based on coding theory and its security is based on the fact that decoding
an arbitrary linear code is NP-complete.

Algorithm 10.3.1 (McEliece’s Code-Based Cryptography). Suppose
Bob wishes to send an encrypted message to Alice, using Alice’s public-key.
Alice generates her public-key and the corresponding private key. Bob uses her
public-key to encrypt his message and sends it to Alice, Alice uses her own
private-key to decrypt Bob’s message.

[1] Key Generation: Alice performs:

[1-1]Choose integers k, n, t as common system parameters.

[1-2]Choose a k×n generator matrix G for a binary (n, k)-linear code which
can correct t errors and for which an efficient decoding algorithm exists.

[1-3]Select a random k × k binary non-singular matrix S.

[1-4]Select a random k × k permutation matrix P .

[1-5]Compute the k × n matrix Ĝ = SGP .

[1-6]Now (Ĝ, t) is Alice’s public-key whereas (S,G, P) is Alice’s private-key.

[2] Encryption: Bob uses Alice’s public-key to encrypt his message to Alice.
Bob performs:

[2-1]Obtain Alice’s authentic public key (Ĝ, t).
[2-2]Represent the message in binary string m of length k.

[2-3]Choose a random binary error vector z of length n having at most t
1’s.

[2-4]Compute the binary vector c = mĜ + z.

[2-5]Send the ciphertext c to Alice.

[3] Decryption: Alice receives Bob’s message m and uses her private-key to
recover c from m. Alice does performs:

[3-1] Compute ĉ = cP−1, where P−1 is the inverse of the matrix P .

[3-2] Use the decoding algorithm for the code generated by G to decode ĉ
to m̂.

[3-3] Compute m = m̂Ŝ−1. This m is thus the original plaintext.

10.4 Lattice-Based Cryptography 227

Theorem 10.3.1 (Correctness of McEliece’s Cryptosystem). In
McEliece’s Cryptosystem, m can be correctly recovered from c.

Proof. Since

ĉ = cP−1

= (mĜ + z)P−1

= (mSGP + z)P−1

= (mS)G + zP−1, (zP−1 is a vector with at most t 1′s)

the decoding algorithm for the code generated by G corrects ĉ to m̂ = mS.
Now applying S−1 to m̂, we get mSS−1 = m, the required original plaintext.

2

Remark 10.3.1. The security of McEliece’s cryptosystem is based on error-
correcting codes, particularly the Goppa [194]; if the Goppa code is replaced
by other error-correcting codes, the security will be severely weakened. The
McEliece’s cryptosystem has two main drawbacks:

(1) the public-key is very large, and
(2) there is a message expansion by a factor of n/k.

It is suggested that the values for the system parameters should be n =
1024, t = 50, and k ≥ 644. Thus for these recommended values of system
parameters, the public-key has about 219 bits, and the message expansion is
about 1.6. For these reasons, McEliece’s cryptosystem receives little attention
in practice. However, as McEliece’s cryptosystem is the first probabilistic
encryption and more importantly, it has resisted all cryptanalysis including
quantum cryptanalysis, it may be a good candidate to replace RSA in the
post-quantum cryptography age.

10.4 Lattice-Based Cryptography

Cryptography based on ring properties and particularly lattice reduction is
another promising direction for post-quantum cryptography, as lattice reduc-
tion is a reasonably well-studied hard problem that is currently not known
to be solved in polynomial-time, or even subexponential-time on a quantum
computer. There are many types of cryptographic systems based on lattice
reduction. In this section, we give a brief account of one if the lattice based
cryptographic systems, the NTRU encryption scheme. NTRU is rumored to

228 10. The Road Ahead

stand for Nth-degree TRUncated polynomial ring, or Number Theorists eRe
Us. It is a rather young cryptosystem, developed by Hoffstein, Pipher and
Silverman [143] in 1995. We give a brief introduction to NTRU, for more
information can be found in [143] and [144].

Algorithm 10.4.1 (NTRU Encryption Scheme). The NTRU encryp-
tion scheme works as follows.

[1] Key Generation:
[1-1] Randomly generate polynomials f and g in Df and Dg, respectively,

each of the form:

a(x) = a0 + a1x + a2x
2 + · · ·+ aN−2x

N−2 + aN−1x
N−1.

[1-2] Invert f in Rp to obtain fp, and check that g is invertible in fq.

[1-3] The public-key is h ≡ p · g · fq (mod q). The private-key is the pair
(f, fp).

[2] Encryption:
[2-1] Randomly select a small polynomials r in Dr.

[2-2] Compute the ciphertext c ≡ r · h + m (mod q).
[3] Decryption:

[3-1] Compute a = center(f · c),
[3-2] Recover m from c by computing m ≡ fp · a (mod q). This is true

since
a ≡ p · r· ≡ +f ·m (mod q).

In Table 10.2, we present some information comparing NTRU to RSA
and McEliece.

NTRU RSA McEliece
Encryption Speed N2 N2 ≈ N3 N2

Decryption Speed N2 N3 N2

Public-Key N N N2

Secret-Key N N N2

Message Expansion logp q − 1 1− 1 1− 1.6

Table 10.2. Figure Comparison among NTRU, RSA and McEliece

10.5 Quantum Cryptography 229

10.5 Quantum Cryptography

It is evident that if a practical quantum computer is available, then all public-
key cryptographic systems based on the difficulty of IFP, DLP, and ECDLP
will be insecure. However, the cryptographic systems based on quantum me-
chanics will still be secure even if a quantum computer is available. In this sec-
tion some basic ideas of quantum cryptography are introduced. More specifi-
cally, a quantum analog of the Diffie-Hellman key exchange/distribution sys-
tem, proposed by Bennett and Brassard in 1984 [25], will be addressed.

First let us define four polarizations as follows:

{0◦, 45◦, 90◦, 135◦} def= {→, ↗, ↑, ↖}. (10.3)

The quantum system consists of a transmitter, a receiver, and a quantum
channel through which polarized photons can be sent [26]. By the law of
quantum mechanics, the receiver can either distinguish between the rectilin-
ear polarizations {→, ↑}, or reconfigure to discriminate between the diagonal
polarizations {↗, ↖}, but in any case, he cannot distinguish both types.
The system works in the following way:

[1] Alice uses the transmitter to send Bob a sequence of photons, each of them
should be in one of the four polarizations {→, ↗, ↑, ↖}. For instance,
Alice could choose, at random, the following photons

↑ ↗ → ↖ → → ↗ ↑ ↑
to be sent to Bob.

[2] Bob then uses the receiver to measure the polarizations. For each photon
received from Alice, Bob chooses, at random, the following type of measure-
ments {+, ×}:

+ + × × + × × × +

[3] Bob records the result of his measurements but keeps it secret:

↑ → ↗ ↖ → ↗ ↗ ↗ ↑
[4] Bob publicly announces the type of measurements he made, and Alice tells

him which measurements were of correct type:
√ √ √ √ √

[5] Alice and Bob keep all cases in which Bob measured the correct type. These
cases are then translated into bits {0, 1} and thereby become the key:

↑ ↖ → ↗ ↑

1 1 0 0 1

230 10. The Road Ahead

[6] Using this secret key formed by the quantum channel, Bob and Alice can now
encrypt and send their ordinary messages via the classic public-key channel.

An eavesdropper is free to try to measure the photons in the quantum
channel, but, according to the law of quantum mechanics, he cannot in general
do this without disturbing them, and hence, the key formed by the quantum
channel is secure.

10.6 Conclusions

On the display window of the MIT history and achievements on the wall of
the ground floor of the MIT Building 10 in Cambridge, Massachusetts, there
is a sentence to praise the RSA cryptosystem: Ronald Rivest, Adi Shamir
and Leonard Adleman invented the first workable public key cryptographic
system, based on the use of very large prime numbers, that has so far proved
unbreakable. This remarkable brief sentence gives a very accurate description
of the RSA cryptosystem and its security. There are many cryptanalytic
attacks on RSA, as summarized as follows:

(1) Direct (brute force) algorithmic attacks on the modulus N :

(1-1) Integer factorization attacks,
(1-2) Discrete logarithm attacks,
(1-3) Quantum factoring and discrete logarithm attacks,

· · · · · ·
(2) Indirect (weakness) algorithmic attacks on e, d, p, q, φ(N), N :

(2-1) Common modulus attack,
(2-2) Fixed-point attacks,
(2-3) Guessing d attacks,
(2-4) Knowing φ(N) attack,
(2-5) Forward attack,
(2-6) eth root attack,
(2-7) Short e attacks,
(2-8) Short d attacks,
(2-9) Partial key exposure attacks,

· · · · · ·

10.6 Conclusions 231

(3) Implementation (side-channel) attacks on d, p, q:

(3-1) Timing attacks,
(3-2) Power attacks,
(3-3) Electromagnetic radiation attacks,
(3-4) Random fault (glitch) attacks,

· · · · · ·
Remarkably enough, there are also many anti-attacks (defenses) against these
attacks, that make RSA still useful, practical and conditionally unbreakable
for 30 years since its invention in 1977. Nevertheless, RSA may become im-
practical if the RSA modulus N becomes too large. RSA may even become
completely useless if an efficient integer factoring algorithm was developed.
Thus, according to Bill Gates’ advice (page 266 of [117]), we need to make an
immediate transition to an alternative technique. Fortunately, there are many
alternatives to replace RSA, the following are just some of these alternatives:

(1) If the size of the RSA modulus N is manageable, just use RSA, or,
otherwise, use ECC, as for the same level of security, the key size of ECC
will be significantly shorter than that of RSA.

(2) If a practical quantum computer becomes available, do not use either
RSA or ECC anymore. Instead, use a quantum resistent cryptographic
system, such as the lattice based cryptosystems ([144], [62], and [253]),
or, the coding-based cryptosystem [203], discussed in this chapter.

(3) Use a quantum cryptographic system against the practical quantum
computers. That is, in the quantum computer world, use quantum cryp-
tography.

We end the book by a quotation of Sir Winston Churchill (1874-1965), a
former British Prime Minister:

This is not the end. It is not even the beginning of the end. But it is,
perhaps, the end of the beginning.

Cryptography and cryptanalysis are such interesting areas that if old cryp-
tosystems are broken, new ideas and new systems will always come up. No
one can precisely predicate the future of cryptography, as Niels Bohr (the
1922 Nobel Prize Laureate of Physics) mentioned:

Prediction is very difficult, especially of the future.

But it is no need to worry about the future. The feature should be always
bright although the road towards the future cannot be smooth.

232 10. The Road Ahead

10.7 Chapter Notes and Further Reading

This chapter presented a very brief account of some of the possible replace-
ments to the RSA cryptosystem just in case RSA becomes insecure duo to
the progress in practical quantum computing, efficient factoring or some other
unexpected attacks on RSA. For more information about elliptic curve cryp-
tosystems, readers are suggested to consult Demytko [98], Hankerson et al
[135], Koblitz [170] Menezes and Vanstone [206], Meyer and Müller [211], and
Miller [213]. For code-based cryptography, see Berlekamp et al [29], Canteaut
and Sendrier [63], Niederreiter [203], McEliece [228], and van Tilburg [318].
Quantum cryptography is currently a very hot research topic and readers
may find the following reference helpful: Bennett [23], Bennett and Brassard
[25], Bennett et al [26] Bruss et al [59], Lo [192], Lo and Chau [193], and
Nielson and Chuang [229]. Finally, the series of conference proceedings en-
titled Advances in Cryptology – Crypto, EuroCrypto, AsiaCrypto published
in Lecture Notes in Computer Science by Springer is an important source of
new developments in all areas of cryptography and cryptanalysis.

Bibliography

1. O. Aciiçmez, “Yet Another Micro-Architectural Attack: Exploiting I-Cache”,
Cryptology ePrint Archive, Report 2007/164, May 2007.

2. O. Aciiçmez, S. Gueron and J. P. Seifert, “New Branch Prediction Vulnerabili-
ties in OpenSSL and Necessary Software Countermeasures”, Cryptology ePrint
Archive, Report 2007/039, February 2007.

3. O. Aciiçmez, J. P. Seifert and Ç. K. Koç, “Micro-Architectural Cryptanalysis”,
IEEE Security & Privacy, July/August 2007, pp 62–64.

4. L. M. Adleman, “A Subexponential Algorithmic for the Discrete Logarithm
Problem with Applications to Cryptography”, Proceedings of the 20th Annual
IEEE Symposium on Foundations of Computer Science, IEEE Press, 1979, pp
55–60.

5. L. M. Adleman, “Algorithmic Number Theory – The Complexity Contribution”,
Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Press, 1994, pp 88–113.

6. L. M. Adleman, C. Pomerance, and R. S. Rumely, “On Distinguishing Prime
Numbers from Composite Numbers”, Annals of Mathematics, 117, 1(1983), pp
173–206.

7. M. Agrawal, N. Kayal and N. Saxena, “Primes is in P”, Annals of Mathematics,
160, 2(2004), pp 781–793.

8. D. Agrawl, B. Archambeault, S. Chari and A. R. Rao, “Advances in Side-
Channel Cryptanalysis: Electromagnetic Analysis and Template Attacks”, RSA
Laboratories Cryptobytes, 6, (1)2003, pp 20–32.

9. M. Ajtai and C. Dwork, “A Pubic-Key Cryptosystem with Worst-
Case/Average-Case Equivalence”, Proceedings of Annual ACM Symposium on
Theory of Computing, 1997, pp 284–293.

10. S. Alaca and H. S. Williams, Introduction to Algebraic Number Theory, Cam-
brdige University Press, 2004.

11. W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, “RSA/Rabin Bits are
1/2+1/poly(log N)) Secure”, Proceedings of the 25th Annual IEEE Symposium
on Foundations of Computer Science, IEEE Press, 1984, pp 449–457.

12. W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, “RSA/Rabin Function:
Certian Parts are as Hard as the Whole”, SIAM Journal on Computing, 17,
2(1988), pp 194–209.

13. T. M. Apostol, Introduction to Analytic Number Theory, Corrected 5th Print-
ing, Undergraduate Texts in Mathematics, Springer-Verlag, 1998.

14. A. O. L. Atkin and F. Morain, “Elliptic Curves and Primality Proving”, Math-
ematics of Computation, 61, (1993), pp 29–68.

234 Bibliography

15. D. Atkins, M. Graff, A. K. Lenstra, P. C. Leyland, “The Magic Words are
Squeamish Ossifrage”, Advances in Cryptology ASIACRYPT’94, Lecture Notes
in Computer Science 917, (1995), pp 261–277.

16. E. Bach, M. Giesbrecht and J. McInnes, The Complexity of Number Theoret-
ical Algorithms, Technical Report 247/91, Department of Computer Science,
University of Toronto, 1991.

17. E. Bach and J. Shallit, Algorithmic Number Theory I – Efficient Algorithms,
MIT Press, 1996.

18. A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge Uni-
versity Press, 1984.

19. D. Balenson, “Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes, and Identifiers”, IETF RFC 1423, 1993.

20. Bateman and Diamond, Analytic Number Theory, World Scientific, 2004.

21. F. L. Bauer, Decrypted Secrets – Methods and Maxims of Cryptology, 3rd
Edition, Springer-Verlag, 2002.

22. M. Bellare and P. Rogaway, “Optimal asymmetric encryption”, Advances
in Cryptology EUROCRYPT’94, Lecture Notes in Computer Science 950,
Springer, 1995, pp 92–111.

23. C. H. Bennett, “Quantum Cryptography using any two Nonorthogonal Sates”,
Physics Review Letters, 68, 1992, pp 3121–3124.

24. C. H. Bennett, “Quantum Information and Computation”, Physics Today, Oc-
tober 1995, pp24–30.
smallskip

25. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distri-
bution and Coin Tossing”, Proccedings of the IEEE International Conference
on Computersm Systems and Singal Processing, IEEE Press, 1984, pp 175–179.

26. C. H. Bennett, G. Brassard and A. K. Ekert, “Quantum Cryptography”, Sci-
entific American, October 1992, pp 26–33.

27. C. H. Bennett, “Strengths and Weakness of Quantum Computing”, SIAM Jour-
nal on Computing, 26, (5)1997, pp 1510–1523.

28. C. H. Bennett and D. P. DiVincenzo, “Quantum Information and Computa-
tion”, Nature, 404, 2000, pp 247–255.

29. E. R. Berlekampe, R. J. McEliece and H. van Tilburg, “On the Inherent In-
tractability of Certain Coding Problems”, IEEE Transaction on Information
Theory, IT-24, 1978, pp 384–386.

30. E. Bernstein and U. Vazirani, “Quantum Complexity Theory”, SIAM Journal
on Computing, 26, 5(1997), pp 1411–1473.

31. D. J. Bernstein, Proving Primality After Agrawal-Kayal-Saxena, Dept of Math-
ematics, Statistics and Computer Science, The University of Illinois at Chicago,
25 Jan 2003.

32. D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols based on the
RSA Encryption Standard PKCS#1”, Advances in Cryptology – Crypto ’98,
Lecture Notes in Computer Science 1462, Springer, 1998, pp 1–12.

33. D. Bleichenbacher, W. Bosma and A. K. Lenstra, “Some Remarks on Lucas-
Based Cryptosystems”, Advances in Cryptology – Crypto ’95, Lecture Notes in
Computer Science 963, Springer, 1995, pp 386–396.

34. J. Blömer and A May, “Low Secret Exponent RSA Revisited”, Cryptography
and Lattices, Lecture Notes in Computer Science 2146, Springer, 2001, pp 4–19.

Bibliography 235

35. M. Blum and S. Goldwasser, “An Efficient Probabilistic Public-key Encryption
Scheme that Hides all Partial Information”, Advances in Cryptology - CRYPTO
’84, Lecture Notes in Computer Science 196, Springer, 1985, pp 289–302.

36. E. Bombieri, Problems of the Millennium: The Riemann Hypothesis, Institute
for Advanced Study, Princeton, and Clay Mathematics Institute, Boston, 2001.

37. D. Boneh, “Twenty Years of Attacks on the RSA Cryptosystem”, Notices of
the AMS, 46 2(1999), pp 203–213.

38. D. Boneh and G. Durfee, “Cryptanalysis of RSA with Private Key d less than
N0.292”, IEEE Transactions on Information Theory, 46, (2000), pp 1339–1349.

39. D. Boneh, G. Durfee and Y. Frankel, “An Attack of RSA Given a Fraction of
the Private Key Bits”, Advances in Cryptology - Asiacrypt ’98, Lecture Notes
in Computer Science 1514, Springer, 1998, pp 25–34.

40. D. Boneh and R. Venkatesan, “Breaking RSA may not be Equivalent to Fac-
toring”, Advances in Cryptology - Eurocrypt ’98, Lecture Notes in Computer
Science 1233, Springer, 1998, pp 59–71.

41. D. Boneh, A. Joux and P. Q. Nguyen, “Why Textbook ElGamal and RSA
Encryption are Insecure”, Advances in Cryptology – Asiacrypt 2000, Lecture
Notes in Computer Science 1976, Springer, 2000, pp 30–43.

42. A. Bortz, D. Boneh and P. Nangy, “Exposing Private Information by Timing
Web Applications”, Proceedings of the 16th International World Wide Web
Conference, Banff, Alberta, 8-12 May 2007.

43. A. Boscher, R. Naciri and E. Prouff, “CRT RSA Algorithm Protected Against
Fault Attacks”, Information Security Theory and Practices: Smart Cards, Mo-
bile and Ubiquitous Computing Systems, Lecture Notes in Computer Science
4462, 2007, pp 229-243.

44. R. P. Brent, “An Improved Monte Carlo Factorization Algorithm”, BIT, 20,
(1980), pp 176–184.

45. R. P. Brent, “Some Integer Factorization Algorithms using Elliptic Curves”,
Australian Computer Science Communications, 8 (1986), pp 149–163.

46. R. P. Brent, “Primality Testing and Integer Factorization”, Proceedings of Aus-
tralian Academy of Science Annual General Meeting Symposium on the Role
of Mathematics in Science, Canberra, 1991, pp 14–26.

47. R. P. Brent, “Uses of Randomness in Computation”, Report TR-CS-94-06,
Computer Sciences Laboratory, Australian National University, 1994.

48. R. P. Brent, “Some parallel algorithms for integer factorisation”, Proc. Fifth
International Euro-Par Conference (Toulouse, France, 1-3 Sept 1999), Lecture
Notes in Computer Science 1685, Springer, 1999, pp 1–22.

49. R. P. Brent, “Twenty years’ analysis of the binary Euclidean algorithm”,
Millenial Perspectives in Computer Science: Proceedings of the 1999 Oxford-
Microsoft Symposium in honour of Professor Sir Antony Hoare, Edited by J.
Davies, A. W. Roscoe and J. Woodcock, Palgrave, New York, 2000, pp 41–53.

50. R. P. Brent, “Recent progress and prospects for integer factorisation algo-
rithms”, Proc. COCOON 2000 (Sydney, July 2000), Lecture Notes in Computer
Science 1858, Springer-Verlag, 2000, pp 3–22.

51. R. P. Brent, “Uncertainty Can Be Better than Certainty: Some Algorithms
for Primality Testing”, Proc. COCOON 2000 (Sydney, July 2000), Strachey
Lecture, Oxford Computing Laboratory, 2 November 2004.

236 Bibliography

52. R. P. Brent, G. L. Cohen and H. J. J. te Riele, “Improved Techniques for
Lower Bounds for Odd Perfect Numbers”, Mathematics of Computation, 57,
196(1991), pp 857–868.

53. D. M. Bressoud, Factorization and Primality Testing, Undergraduate Texts in
Mathematics, Springer-Verlag, 1989.

54. D. Bressoud and S. Wagon, A Course in Computational Number Theory, Key
College Publishing and Springer-Verlag, 2000.

55. E. F. Brickell, D. M. Gordon and K. S. McCurley, “Fast Exponentiation
with Precomputation (Extended Abstract)”, Advances in Cryptology - EURO-
CRYPT ’92, Lecture Notes in Computer Science 658, Springer-Verlag, 1992,
pp 200–207.

56. E. Brier, B. Chevallier-Mames, M. Ciet and C. Clavier, “Why One Should Also
Secure RSA Public Key Elements”, Cryptographic Hardware and Embedded
Systems - CHES 2006, Lecture Notes in Computer Science 4249, Springer, 2006,
pp 324–338.

57. D. R. L. Brown, Breaking RSA May be as Difficult as Factoring, Certicom
Research, 2006.

58. D. Brumley and D. Boneh, “Remote Timing Attacks are Practical”, Proceed-
ings of 12th Usenix Security Symposium, Wahsington, D. C., 4-8 August 2003,
pp 1–14.

59. D. Bruss, G. Erdélyi, T. Meyer, T. Riege and J. Rothe, “Quantum Cryptogra-
phy: A Survey”, ACM Computing Surveys, 39, 2(2007), Article 6, pp 1–27.

60. , J. A. Buchmann, Introduction to Cryptography, Springer, 2001.

61. S. A. Burr (editor), The Unreasonable Effectiveness of Number Theory, Pro-
ceedings of Symposia in Applied Mathematics 46, American Mathematical So-
ciety, 1992.

62. J. Y. Cai and T. W. Cusick, “A Lattice-Based Public-Key Cryptosystem”,
Information and Computation, 151, 1-2(1999), pp 17–31.

63. E. F. Canteaut and N. Sendrier, “Cryptanalysis of the Original McEliece Cryp-
tosystem”, Advances in Cryptology – AsiaCrypto’98, Lecture Notes in Com-
puter Science 1514, Springer, 1989, pp 187–199.

64. J.W.S. Cassels, An Introduction to the Geometry of Numbers, Springer, 1997.

65. J. R. Chen, “On the representation of a larger even integer as the sum of a
prime and the product of at most two primes”, Scientia Sinica 16, (1973), pp
157–176.

66. L. Childs, A Concrete Introduction to Higher Algebra, 2nd Edition, Springer-
Verlag, 2000.

67. S. Chowla, “There Exists an Infinity of 3-Combinations of Primes in A. P.”,
Proceedings of Lahore Philosophy Society, 6, 2(1944), pp 15–16.

68. I. L Change, R. Laflamme, P, Shor, and W. H. Zurek, “Quantum Computers,
factoring, and Decoherence, Science, 270, 1995, pp 1633–1635.

69. A. Church, “An Unsolved Problem of Elementary Number Theory” The Amer-
ican Journal of Mathematics, 58, 1936, pp 345–363.

70. A. Church, “Book Review: On Computable Numbers, with an Application to
the Entscheidungsproblem by Turing”, Journal of Symbolic Logic, 2, 1937, pp
42–43.

71. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate
Texts in Mathematics 138, Springer-Verlag, 1993.

Bibliography 237

72. S. Cook, The Complexity of Theorem-Proving Procedures, Proceedings of the
3rd Annual ACM Symposium on the Theory of Computing, New York, 1971,
pp 151–158.

73. S. Cook, The P versus NP Problem, University of Toronto, April, 2000.
(Manuscript prepared for the Clay Mathematics Institute for the Millennium
Prize Problems; revised in November 2000.)

74. S. Cook and N. Thapen, “The Strength of Replacement in Weak Arithmetic”,
Nineteenth Annual IEEE Symposium on Logic in Computer Science (LICS
2004), IEEE Press, 2004, pp 256–264.

75. J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of
Complex Fourier Series”, Mathematics of Computation, 19 (1965), pp 297–301.

76. D. Coppersmith, “Finding a Small Root of a Univariate Modular Equation”,
Advances in Cryptology – Eurocrypt’96, Lecture Notes in Computer Science
1070, Springer, 1996, 155–165.

77. D. Coppersmith, “Finding a Small Root of a Bivariate Integer Equation; Fac-
toring with High Bits Known”, Advances in Cryptology – Eurocrypt’96, Lecture
Notes in Computer Science 1070, Springer, 1996, 178–180.

78. D. Coppersmith, “Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerability”, Journal of Cryptology, 10, (1997), pp 233–260.

79. D. Coppersmith, “Finding a Small Root of a Bivariate Integer Equation; Factor-
ing with High Bits Known”, Cryptography and Lattices – CaLC 2001, Lecture
Notes in Computer Science 2146, Springer, 2001, 20–31.

80. D. Coppersmith, “Solving Low Degree Polynomials”, Presentation at Asi-
acrypt, Taipei, Taiwan, 1 December 2003.

81. D. Coppersmith, M. Franklin, J. Patarin and R. Reiter, “Low-Exponent RSA
with Related Messages”, Advances in Cryptology - Eurocrypt’96, Lecture Notes
in Computer Science 1070, Springer, 1996, 1–9.

82. T. H. Cormen, C. E. Ceiserson and R. L. Rivest, Introduction to Algorithms,
MIT Press, 1990.

83. J. S. Coron, “30 Years of Attacks agianst RSA”. Uni-
versité du Luxenbourg, 2007, http://jscoron.fr/blog/wp-
content/uploads/2007/05/rsasurvey.pdf.

84. J. S. Coron, M. Joye, D. Naccache and P Paillier, “New Attacks on PKCS#1
v1.5 Encryption”, Advances in Cryptology - EUROCRYPT 2000, Lecture Notes
in Computer Science 1807, Springer, 2000, pp 369–381.

85. J. S. Coron and A. May, “Deterministic Polynomial-Time Equivalence of Com-
puting the RSA Secret Key and Factoring”, Journal of Cryptology, 20, (1) 2007,
pp 39–50.

86. J. S. Coron, D. Naccache, Y. Desmedt, A. Odlyzko and J. P. Stern, “Index
Calculation Attacks on RSA Signature and Encryption” Designs, Codes and
Cryptography, 38, (1) 2006, pp 41–53.

87. J. S. Coron, D. Naccache, J. P. Stern “On the Security of RSA Padding”,
Advances in Cryptology - CRYPTO’99, Lecture Notes in Computer Science
1666, Springer, 1999, pp 1–18.

88. S. C. Countinho, “The Mathematics of Ciphers: Number Theory and RSA
Cryptography”, A K Peters, 1999.

89. D. A. Cox, Primes of the Form x2 + ny2, Wiley, 1989.

238 Bibliography

90. R. Crandall and C. Pomerance, Prime Numbers – A Computational Perspec-
tive, 2nd Edition, Springer-Verlag, 2005.

91. P. A. Crouch, and J. H. Dvenport, “Lattice Attacks on RSA-Encrypted IP and
TCP”, Cryptography and Coding, Lecture Notes in Computer Science 2260,
Springer, 2001, pp 329–338.

92. S. Dasgupta, C. Papadimitriou, and U. Vazirani, Algorithms, McGraw-Hill,
2007.

93. H. Davenport, The Higher Arithmetic, 7th Edition, Cambridge University
Press, 1999.

94. J. A. Davis and D. B. Holdridge, “Factoring using the Quadratic Sieve Algo-
rithm”, Advances in Crypotology Crypto ’83, Plenum Press, 1984, pp 103–113.

95. J. F. Dhem, F. K. Koeune, P. A. Leroux, P. Mestré, J.J. Quisquater, and J.
L. Willems, “Apractical Implementation of the Timing Attacks”, Smart Card:
Research and Applications, Lecture Notes in Computer Science 1820, Springer,
2000, pp 167–182.

96. J. M. DeLaurentis, A Further Weakness in the Common Modulus Protocol for
the RSA Cryptoalgorithm, Crypotologia, 8, 1984, pp 253–259.

97. H. Delfs and H Knebl, Introduction to Cryptography, Springer, 2002.

98. N. Demytko, “A New Elliptic Curve Based Analogue of RSA”, Advances in
Cryptology - EUROCRYPT ’93, Lecture Notes in Computer Science 765,
Springer, 1994, pp 40–49.

99. D. Deutsch, “Quantum Theory, the Church–Turing Principle and the Universal
Quantum Computer”, Proceedings of the Royal Society of London, Series A,
400, (1985), pp 96–117.

100. L. E. Dickson, History of the Theory of Numbers I – Divisibility and Primality,
G. E. Stechert & Co., New York, 1934.

101. W. Diffie and E. Hellman, “New Directions in Cryptography”, IEEE Trans-
actions on Information Theory, 22, 5(1976), pp 644–654.

102. W. Diffie and E. Hellman, “Privacy and Authentication: An Introduction to
Cryptography”, Proceedings of the IEEE, 67, 3(1979), pp 393–427.

103. P. G. L. Dirichlet, Lecturers on Number Theory, Supplements by R. Dedekind,
American Mathematics Society and London Mathematics Society, 1999.

104. J. D. Dixon, “Factorization and Primality tests”, The American Mathematical
Monthly, June-July 1984, pp 333–352.

105. E. H. Edwards, Riemann’s Zeta Function, Dover, 1974.

106. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme based on
Discrete Logarithms”, IEEE Transactions on Information Theory, 31 (1985),
pp 496–472.

107. M. Ernst, E. Jochemsz, A. May and B. de Weger, “Partial Key Exposure
Attacks on RSA up to Full Size Exponents”, Advances in Cryptology EURO-
CRYPT 2005, Lecture Notes in Computer Science 3494, Springer, 2005, pp
371–386.

108. Euclid, The Thirteen Books of Euclid’s Elements, Translated by T. L. Heath,
Great Books of the Western World 11, edited by R. M. Hutchins, William
Benton Publishers, 1952.

109. Euclid, The Thirteen Books of Euclid’s Elements, Second Edition, Translated
by Thomas L. Heath, Dover Publications, 1956.

Bibliography 239

110. Everest and Ward, An Introduction to Number Theory, Springer, 2005.

111. R. P. Feynman, “Simulating Physics with Computers”, International Journal
of Theoretical Physics, 21, (1982), 467–488.

112. R. P. Feynman, Feynman Lectures on Computation, Edited by A. J. G. Hey
and R. W. Allen, Addison-Wesley, 1996.

113. P. Fouque, S. Kunz-Jacques, G. Martinet, F. Muller and F. Valette, “Power
Attack on Small RSA Public Exponent”, Cryptographic Hardare and Embedded
Systems – CHES 2006, Lecture Notes in Computer Science 4249, Springer,
2006, pp 339–353.

114. E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern, “RSA – OAEP is secure
under the RSA assumption”, Advances in Cryptology – CRYPTO 2001, Lecture
Notes in Computer Science 2139, Springer, 2001, pp 260–274.

115. M. Gardner, “Mathematical Games – A New Kind of Cipher that Would Take
Millions of Years to Break”, Scientific American, 237, 2(1977), pp 120–124.

116. M. R. Garey and D. S. Johnson, Computers and Intractability – A Guide to
the Theory of NP-Completeness, W. H. Freeman and Company, 1979.

117. B. Gates, The Road Ahead, Viking, 1995.

118. C. F. Gauss, Disquisitiones Arithmeticae, G. Fleischer, Leipzig, 1801. English
translation by A. A. Clarke, Yale University Press, 1966. Revised English trans-
lation by W. C. Waterhouse, Springer-Verlag, 1975.

119. N. Gershenfield and I. L. Chuang, “Bulk Spin-Resonance Quantum Compu-
tation”, Science, 275, 1997, pp 350–356.

120. M. Girault, R. Cohen and M. Campana, “A Generalized Birthday Attack”,
Advances in Cryptology - EUROCRYPT ’88, Lecture Notes in Computer Sci-
ence 330, Springer, 1988, pp 129–156.

121. S. Goldwasser, “The Search for Provably Secure CryptoSystems”, Cryptol-
ogy and Computational Number Theory, Proceedings of Symposia in Applied
Mathematics, 42, American Mathematics Society, 1989, pp 89–114.

122. S. Goldwasser and J. Kilian, “Almost All Primes Can be Quickly Certified”,
Proceedings of the 18th ACM Symposium on Theory of Computing, Berkeley,
1986, pp 316–329.

123. S. Goldwasser and J. Kilian, “Primality Testing Using Elliptic Curves”, Jour-
nal of ACM, 46, 4(1999), pp 450–472.

124. S. Goldwasser and S. Micali, “Probabilistic Encryption”, Journal of Computer
and System Sciences, 28, (1984), pp 270–299.

125. S. Goldwasser, S. Micali and C. Rackoff, “The Knowledge Complexity of In-
teractive Proof System”, SIAM Journal on Computing, 18, (1989), pp 186–208.

126. D. M. Gordon and K. S. McCurley, “Massively Parallel Computation of Dis-
crete Logarithms”, Advances in Cryptology - Crypto ’92, Lecture Notes in Com-
puter Science 740, Springer-Verlag, 1992, pp 312–323.

127. D. M. Gordon, “Discrete Logarithms in GF(p) using the Number Field Sieve”,
SIAM Journal on Discrete Mathematics, 6, 1(1993), pp 124–138.

128. B. Green and T. Tao, “The Primes Contain Arbitrarily Long Arithmetic Pro-
gressions”, arXiv:math/0404188v5, 9 Feb 2007, 56 pages. Submitted to Annual
of Mathematics on 8 April 2004 and last revised 9 Feb 2007..

129. J. Grobchadl, “The Chinese Remainder Theorem and its Application in a
High-speed RSA Crypto Chip”, Proceedings of the 16th Annual Computer Se-
curity Applications Conference (ACSAC’00), IEEE Press, 2000, pp 384–393.

240 Bibliography

130. Grustka,J. Quantum Computing, McGraw-Hill, 1999.

131. S. Gueron and J. P. Seifert, “Is It Wise to Publish Your Public RSA Keys?”,
Fault Diagnosis and Tolerance in Cryptography, Lecture Notes in Computer
Science 4236, Springer, 2006, pp 1–12.

132. F. Guterl, “Suddenly, Number Theory Makes Sense to Industry”, International
Business Week, 20 June 1994, pp 62–64.

133. M. Gysin and J. Seberry, “Generalised Cycling Attacks on RSA and Strong
RSA Primes”, Information Security and Privacy, Lecture Notes in Computer
Science 1587, Springer, 1999, pp 149-163.

134. G. Hachez and J. J. Quisquater, “Montgomery Exponentiation with no Final
Subtractions: Improved Results”, Cryptographic Hardware and Embedded Sys-
tems - CHES 2000, Lecture Notes in Computer Science 1965, Springer, 2000,
pp 91–100.

135. D. Hankerson, A. J. Menezes and S. Vanstone, Guide to Elliptic Curve Cryp-
tography, Springer, 2004.

136. J. Hastäd, “Solving Simutaneous Modlar Equations of Low Degres”, SIAM
Journal on Computing, 17, (1988), pp 336–341.

137. G. H. Hardy, A Mathematician’s Apology, Cambridge University Press, 1940
(1979 Reprinting).

138. G. H. Hardy and E. M. Wright, An Introduction to Theory of Numbers, 5th
Edition, Oxford University Press, 1979.

139. J. Hastäd, “On Using RSA with Low Exponent in a Public Key Network”,
Advances in Cryptology - Crypto ’85, Lecturer Notes in Computer Science 218,
Springer, 1986, pp 403–408.

140. M. Hellman, “Private Communications”, 2001–2003.

141. M. J. Hinke, “Small Private Exponent Partial Key-Exposure Attacks on Mul-
tiprime RSA” Technical Report CACR 2005-16, University of Waterloo, 2005.

142. M. J. Hinke, “Another Look at Small RSA Exponents” CT-RSA, Edited bt
D. Pointcheval 2006, Lecture Notes in Computer Science 3860, Springer, 2006,
pp. 82–98.

143. J. Hoffstein, J. Pipher and J. H. Silverman, “A Ring-Based Public-Key Cryp-
tosystem”, Algorithmic Number Theory ANTS-III, Lecture Notes in Computer
Science 1423, Springer, 1998, pp 267–288.

144. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman and W. Whyte,
“NTRUEncrypt and NTRUSign: Efficient Public Key Algorithmd for a Post-
Quantum World”, Proceedings of the International Workshop on Post-Quantum
Cryptography (PQCrypto 2006), 23-26 May 2006, pp 71–77.

145. J. Hopcroft, R. Motwani and J. Ullman, Introduction to Automata Theory,
Languages, and Computation, 3rd Edition, Addison-Wesley, 2007.

146. N. Howgrave-Graham, “Finding Small Roots of Univariate Modular Equa-
tions Revisited”, ACrytography and Coding, Lecture Notes in Computer Sci-
ence 1355, Springer, 1997, 131–142.

147. L. Hua, Introduction to Number Theory, English Translation from Chinese
by P. Shiu, Springer-Verlag, 1980.

148. R. J. Hughes, “Cryptography, Quantum Computation and Trapped Ions”,
Philosophic Transactions of the Royal Society London, Series A, 356 (1998),
pp 1853–1868.

Bibliography 241

149. R. M. Huizing, An Implementation of the Number Field Sieve, Note NM-
R9511, Centre for Mathematics and Computer Science (CWI), Amsterdam,
1995.

150. D. Husemöller, Elliptic Curves, Graduate Texts in Mathematics 111, Springer-
Verlag, 1987.

151. H. Inamori, A Minimal Introduction to Quantum Key Distribution, Centre
for Quantum Computation, Clarendon Laboratory, Oxford University, 1999.

152. A. E. Ingham, The Distribution of Prime Numbers, Forworded by R. C.
Vaughan in 1990, Cambridge University Press, 1995.

153. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
2nd Edition, Graduate Texts in Mathematics 84, Springer-Verlag, 1990.

154. ITU-X Recommendation X.509, “Information technology - Open Systems In-
terconnection - The Directory: Authentication framework”, 1989.

155. O. Jacobi and Y. Jacobi, “A New Related Message Attack on RSA”, Pub-
lic Key Cryptography - PKC 2005, Lecture Notes in Computer Science 3386,
Springer, 2005, pp 1–8.

156. M. J. Jacobson, N. Koblitz, J. H. Silverman, A. Stein, E. Teske, “Analysis of
the Xedni Calculus Attack”, Designs, Codes and Cryptography, 20, 2000, pp
41-64.

157. E. Jochemsz and A. May, “A Polynomial Time Attack on RSA with Private
CRT-Exponents Smaller Than N0..73”, Advances in cryptology – Crypto 2007,
Lecture Notes in Computer Science 4622, Springer, 2007, pp 395–411.

158. M. Joye and J. J. Quisquater, “Cryptanalysis of RSA-Type Cryptosystems: A
Visit”, Networks Threats, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, American Mathematical Society, 38, 1998, pp 21–31.

159. M. Joye, J. J. Quisquater and T.Takagi, “How to Choose Secret Parameters for
RSA and its Extensions to Elliptic Curves”, Designs, Codes and Cryptography,
23, 2001, pp 297–316.

160. M. F. Jones, M. Lal and W. J. Blundon, “Statistics on Certain Large Primes”,
Mathematics of Computation, 21, 97(1967), pp 103-107.

161. D. Kahn, The Codebreakers: The Story of Secret Writing, Macmillan, 1976

162. B. Kaliski and M. Robshaw, “The Secure Use of RSA”, CryptoByte, 1, (1995),
7-13.

163. B. Kaliski, “Timing Attacks on Cryptosystems”, RSA Laboratories Bulletin,
Number 2, January 1996.

164. R. Karp, “Reducibility among Cominatorial Problems”, Complexity of Com-
puter Computations, Edited by R. E. Miller and J. W. Thatcher, Plenum Press,
New York, 1972, 85–103.

165. S. Katzenbeisser “Recent Advances in RSA Cryptography”, Kluwer Academic
Publishers, 2001.

166. J. Kilian, Uses of Randomness in Algorithms and Protocols, MIT Press, 1990.

167. C. H. Kim and J. J. Quisquater, “Fault Attacks for CRT Based RSA: New
Attacks, New Results, and New Countermeasures”, Information Security The-
ory and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems,
Lecture Notes in Computer Science 4462, 2007, pp215–228.

168. V. Klma and T Rosa, “Further Results and Considerations on Side Channel
Attacks on RSA” Lecture Notes in Computer Science 2523, Springer, 2003, pp
63–92.

242 Bibliography

169. D. E. Knuth, The Art of Computer Programming II – Seminumerical Algo-
rithms, 3rd Edition, Addison-Wesley, 1998.

170. N. Koblitz, “Elliptic Curve Cryptography”, Mathematics of Computation, 48
(1987), 203–209.

171. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd Edition,
Graduate Texts in Mathematics 97, Springer-Verlag, 1993.

172. N. Koblitz, A Course in Number Theory and Cryptography, 2nd Edition,
Graduate Texts in Mathematics 114, Springer-Verlag, 1994.

173. N. Koblitz, Algebraic Aspects of Cryptography, Algorithms and Computation
in Mathematics 3, Springer-Verlag, 1998.

174. N. Koblitz, “A Survey of Number Theory and Cryptography”, Number The-
ory, Edited by . P. Bambah, V. C. Dumir and R. J. Hans-Gill, Birkhäser, 2000,
pp 217–239.

175. N. Koblitz, “Cryptography”, Mathematics Unlimited – 2001 and Beyond,
Edited by B. Enguist and W. Schmid, Springer-Verlag, 2001, pp 749–769.

176. N. Koblitz and A. J. Menezes, “A Survey of Public-Key Cryptosystems”,
SIAM Review, 46, 2004, pp 599–634.

177. N. Koblitz and A. J. Menezes, “Another look at ‘provable security’,”, Journal
of Cryptology, 20, 2004, pp 3–37.

178. P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems”, Advances in Cryptology crypto ’96, Springer-Verlag, LNCS
1109, 1996, pp 104–113.

179. A. G. Konheim, Computer Security and Cryptography, Wiley, 2007.

180. K. Koyama, U. U. Maurer, T. Okamoto and S. A. Vanstone, “New Public-Key
Scheme based on Elliptic Curve over the Ring Zn”, Advances in Cryptology -
CRYPTO ’91, Lecture Notes in Computer Science 576, Springer, 1992, pp 252-
266.

181. U. Kühn, “Side-Channel Attacks on Textbook RSA and ELGamal Encryp-
tion”, Proceedings of the Public-Key Cryptography (PKC 2003), Lecture Notes
in Computer Science 2567, Springer, 2003, pp 324–336.

182. K. Kurosawa, K. Okada and Shigeo Tsujii, “Low exponent attack against
elliptic curve RSA”, Advances in Cryptology ASIACRYPT ’94, Lecture Notes
in Computer Science 917, Springer, 1995, pp 376–383.

183. L. J. Lander and T. R. Parkin, “Consecutive primes in arithmetic progression”,
Mathematics of Computation, 21, 99(1967), page 489.

184. D. H. Lehman, “A Theorem in the Theory of Numbers”, Bulletin of the Amer-
ican Mathematical Society, 14, (1907), pp 501–502.

185. R. S. Lehman, “Factoring Large Integers”, Mathematics of Computation, 28,
126(1974), pp 637–646.

186. H. W. Lenstra, Jr., “Factoring Integers with Elliptic Curves”, Annals of Math-
ematics, 126, (1987), pp 649–673.

187. A. K. Lenstra and H. W. Lenstra, Jr. (editors), The Development of the Num-
ber Field Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, 1993.

188. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring Polynomials
with Rational Coefficients”, Mathematische Annalen, 261, (1982), pp 515–534.

189. A. K. Lenstra and R. R. Verheul, “Selecting Cryptographic Key Sizes”, Jour-
nal of Cryptology, 14, 2001, pp 255–293.

Bibliography 243

190. W. J. LeVeque, Fundamentals of Number Theory, Dover, 1977.

191. H. R. Lewis and C. H. Papadimitrou, Elements of the Theory of Computation,
Prentice-Hall, 1998.

192. H. K. Lo, “Quantum Cryptography”, Introduction to Quantum Computation
and Information, edited by H. K. Lo, S. Popescu and T. Spiller, World Scientific,
1998, 76–119.

193. H. Lo and H. Chau, “Unconditional Security of Quantum key Distribution
over Arbitrary Long Distances”, Science, 283, 1999, 2050–2056.

194. F. J. MacWilliams and N. J. A. Sloana, Power Analysis Attacks: Revealing
the Secrets of Smart Cards, Springer, 2007.

195. S. Mangard, E. Oswald and T. Popp, Power Analysis Attacks: Revealing the
Secrets of Smart Cards, Springer, 2007.

196. W. Mao, Modern Cryptography, Prentice-Hall, 2004.

197. K. Martin, “Secure Communication without Encryption’, IEEE Security &
Privacy, 5, 2(2007), pp 68–71.

198. R. Mayer-Sommer, “Smartly Analyzing the Simplicity and the Power of Sim-
ple Power Analysis on Smartcards”, Cryptographic Hardware and Embedded
Systems - CHES 2000, Lecture Notes in Computer Science 1965, Springer,
2000, pp 78–92.

199. S. McMath, Daniel Shanks’ Square Forms Factorization, United States Naval
Academy, Annapolis, Maryland, 24 November 2004.

200. D. C. Marinescu and G. M. Marinescu, Approaching Quantum Computing,
Prentice-Hall, 2005.

201. K. S. McCurley, “The Discrete Logarithm Problem”, Cryptology and Com-
putational Number Theory, edited by C. Pomerance, Proceedings of Symposia
in Applied Mathematics 42, American Mathematics Society, 1990, pp 49–74.

202. K. S. McCurley, “Odds and Ends from Cryptology and Computational Num-
ber Theory”, Cryptology and Computational Number Theory, edited by C.
Pomerance, Proceedings of Symposia in Applied Mathematics 42, American
Mathematics Society, 1990, pp 49–74.

203. R. J. McEliece, A Public-Key Cryptosystem based on Algebraic Coding The-
ory, JPL DSN Progress Report 42-44, 1978, pp 583–584.

204. A. R. Meijer, “Groups, Factoring, and Cryptography” Mathematics Magazine,
69, 2(1996), pp 103–109.

205. S. Müller and W. B. Müller, “The Security of Pubic-Key Cryptosystems based
on Integer Factorization”, Information Security and Privacy - ACISP 1998,
Lecture Notes in Computer Science 1438, Springer, 1998, pp 9–23.

206. A. Menezes and S. A. Vanstone, “Elliptic curve cryptosystems and their im-
plementation”, Journal of Cryptology, 6, (1993), pp 209–224.

207. A. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptosystems, CRC Press, 1996.

208. R. C. Merkle, “Secure Communications over Insecure Channels” Communica-
tions of the ACM, 21, (1978), pp 294–299. (Submitted in 1975.)

209. T. S. Messerges, E. A. Dabbish and R. H. Sloan, “Power Analysis Attack on
Modular Exponentiation in Smartcard”, Cryptographic Hardare and Embedded
Systems – CHES 1999, Lecture Notes in Computer Science 1717, Springer,
1999, pp 144–157.

244 Bibliography

210. J. F. Mestre, “Formules Explicites et Minoration de Conducteurs de Variétés
algébriques” Compositio Mathematica, 58, (1986), pp 209–232.

211. B. Meyer and V. Müller, “A Public Key Cryptosystem Based on Elliptic
Curves over Z/nZ Equivalent to Factoring”, Advances in Cryptology, EURO-
CRYPT ’96, Proceedings, Lecture Notes in Computer Science 1070, Springer-
Verlag, 1996, pp 49–59.

212. G. Miller, “Riemann’s Hypothesis and Tests for Primality”, Journal of Systems
and Computer Science, 13, (1976), pp 300–317.

213. V. Miller, “Uses of Elliptic Curves in Cryptography”, Advances in Cryptology,
CRYPTO ’85, Proceedings, Lecture Notes in Computer Science 218, Springer-
Verlag, 1986, 417–426.

214. J. F. Misarsky, “A Multiplicative Attack using LLL Algorithm on RSA Sig-
natures with Redundancy”, Advances in Cryptology CRYPTO ’97, Lecture
Notes in Computer Science 1294, 1997, pp 221–234.

215. R. A. Mollin, Algebraic Number Theory, Chapman & Hall/CRC, 1999.

216. R. A. Mollin, An Introduction to Cryptography, Chapman & Hall/CRC, 2001.

217. R. A. Mollin, RSA and Public-Key Cryptography, Chapman & Hall/CRC
Press, 2003.

218. R. A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times,
Chapman & Hall/CRC Press, 2005.

219. P. L. Montgomery, “Multiplication without Trial Division”, Mathematics of
Computation, 44, (1985), pp 519–521.

220. P. L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Fac-
torization”, Mathematics of Computation, 48, 177(1987), pp 243–264.

221. P. L. Montgomery, “A Survey of Modern Integer Factorization Algorithms”,
CWI Quarterly, 7, 4(1994), pp 337–394.

222. F. Morain, “Implementing the Asymptotically Fast Version of the Elliptic
Curve Primality Proving Algorithm”, Mathematics of Computation, 76 (2007),
pp 493–505.

223. M. A. Morrison and J. Brillhart, “A Method of Factoring and the Factorization
of F7”, Mathematics of Computation, 29 (1975), pp 183–205.

224. R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

225. S. Mı̈ller, “On the Security of an RSA Based Encryption Scheme”, Information
Security and Privacy: 4th Australasian Conference, ACISP’99, Lecture Notes
in Computer Science, 1587, 1999, pp 135–148.

226. D. Naccache and M. Tunstall, “How to Explain Side-Channel Leakage to Your
Kids”, Cryptographic Hardware and Embedded Systems - CHES 2000, Lecture
Notes in Computer Science 1965, Springer, 2000, pp 49–80.

227. M. B. Nathanson, Elementary Methods in Number Theory, Springer-Verlag,
2000.

228. H. Niederreiter, “Knapsack Type Cryptosystems and Algebraic Coding The-
ory”, Problem of Control and Information Theory, 15, 1986, pp 159–166.

229. M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Infor-
mation, Cambridge University Press, 2000.

230. D. Neuenschwander, “RSA and Probabilistic Prime Number Tests”, Prob-
abilistic and Statistical Methods in Cryptology, Lecture Notes in Computer
Science 3028, Springer, 2004, 17–35.

Bibliography 245

231. I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the
Theory of Numbers, 5th Edition, John Wiley & Sons, 1991.

232. A. M. Odlyzko, “Discrete Logarithms in Finite Fields and their Cryptographic
Significance”, Advances in Cryptography, EUROCRYPT ’84, Proceedings, Lec-
ture Notes in Computer Science 209, Springer, 1984, pp 225–314.

233. A. M. Odlyzko, “Discrete Logarithms: the Past and the future”, Design,
Codes, and Cryptography, 19, (2000), pp 129–145.

234. C. H. Papadimitrou, Computational Complexity, Addison Wesley, 1994.

235. S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function,
Cambridge University Press, 1988.

236. R. G. E. Pinch, “Some Primality Testing Algorithms”, Notices of the American
Mathematical Society, 40, 9(1993), pp 1203–1210.

237. R. G. E. Pinch, “Extending the Wiener Attack to RSA-Type Cryptosystem”,
Electronic Letters, 31, (20) 1995, pp 1736–1738.

238. R. G. E. Pinch, Mathematics for Cryptography, Queen’s College, University
of Cambridge, 1997.

239. A. O. Pittenger, An Introduction to Quantum Comuting Algorithms,
Birkhäuser, 2001.

240. B. Pfitzmann and M. Waidner, “Attacks on Protocols for Server-Aided RSA
Computation”, Advances in Cryptology - EUROCRYPT ’92, Lecture Notes in
Computer Science 658, Springer, 1993, pp 153–162.

241. S. C. Pohlig and M. Hellman, “An Improved Algorithm for Computing Loga-
rithms over GF(p) and its Cryptographic Significance”, IEEE Transactions on
Information Theory, 24 (1978), pp 106–110.

242. J. M. Pollard, “Theorems on Factorization anf Primality Testing”, Procedings
of Cambridge Philosophy Society, 76 (1974), pp 521–528.

243. J. M. Pollard, “A Monte Carlo Method for Factorization”, BIT, 15, (1975),
pp 331–332.

244. J. M. Pollard, “Monte Carlo Methods for Index Computation (mod p)”,
Mathematics of Computation, 32, (1980), pp 918–924.

245. C. Pomerance, “Analysis and Comparison of some Integer Factoring Algo-
rithms”, in H. W. Lenstra, Jr. and R. Tijdeman, eds., Computational Methods
in Number Theory, No 154/155, Mathematical Centrum, Amsterdam, 1982,
pp 89–139.

246. C. Pomerance, “The Quadratic Sieve Factoring Algorithm”, Proceedings of
Eurocrypt 84, Lecture Notes in Computer Science 209, Springer, 1985, pp 169–
182.

247. C. Pomerance (editor), “Cryptology and Computational Number Theory – An
Introduction”, Proceedings of Symposia in Applied Mathematics 42, American
Mathematical Society, 1990.

248. C. Pomerance, “A Tale of Two Sieves”, Notice of the AMS, 43, 12(1996), pp
1473–1485.

249. “Elementary Thoughts on Discrete Logarithms”, Proceedings of a MSRI
Workshop, edited by J. Buhler and P. Stevenhage, 2004.

250. J. Proos and C. Zalka, “Shor’s Discrte Logarithm Quantum Algorithm for
Elliptic Curves”, Dept of Combinatorics and Optimization, University of Wa-
terloo, 25 January 2003, 35 pages.

246 Bibliography

251. M. O. Rabin, “Probabilistic Algorithms for Testing Primality”, Journal of
Number Theory, 12, (1980), pp 128–138.

252. M. Rabin, “Digitalized Signatures and Public-Key Functions as Intractable
as Factorization”, Technical Report MIT/LCS/TR-212, MIT Laboratory for
Computer Science, 1979.

253. O. Regev, “New Lattice Based Cryptographic Constructions”, Proceedings of
the 35th Annual ACM Symposium on the Theory of Computing, San Diego,
California, 2003, pp 407–416.

254. P. Ribenboim, The Little Book on Big Primes, Springer-Verlag, 1991.

255. P. Ribenboim, “Selling Primes”, Mathematics Magazine, 68, 3(1995), pp 175–
182.

256. P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag,
1996.

257. H. J. J. te Riele, “Factorization of RSA-140 using the Number Field Sieve”,
http://www.crypto-world.com/announcements/RSA140.txt, 4 February 1999.

258. H. J. J. te Riele, “Factorization of a 512-bits RSA Key using the Number
Field Sieve”, http://www.crypto-world.com/announcements/RSA155.txt, 26
August 1999.

259. H. J. J. te Riele, W. Lioen and D. Winter, “Factoring with the Quadrtaic Sieve
on Large Vector Computers”, Journal of Computational and Applied Mathe-
matics, 27, (1989), pp 267–278.

260. H. Riesel, Prime Numbers and Computer Methods for Factorization,
Birkhäuser, Boston, 1990.

261. R. L. Rivest, A. Shamir and L. Adleman, On Digital Signatures and Public
Key Cryptosystems, Technical Memo 82, Laboratory for Computer Science,
Massachusetts Institute of Technology, April 1977.

262. R. L. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems”, Communications of the ACM, 21,
2(1978), pp 120–126.

263. R. L. Rivest, “Remarks on a Proposed Cryptanalytic Attack on the M.I.T.
Public-key Cryptosystem”, Cryptologia, 2, 1(1978), pp 62–65.

264. R. L. Rivest and B. Kaliski, RSA Problem, In: Encyclopedia of Cryptography
and Security, Edited by H. C. A. van Tilborg, Springer-Verlag, 2005.

265. R. L. Rivest and A. Shamir, “Efficient Factoring based on Partial Informa-
tion”, Advances in Cryptology - EUROCRYPT ’86, Lecture Notes in Computer
Science 219, Springer, 1986, pp 31–34.

266. H. E. Rose, A Course in Number Theory, 2nd Edition, Oxford University
Press, 1994.

267. K. Rosen, Elementary Number Theory and its Applications, 5th Edition,
Addison-Wesley, 2005.

268. S. Ross, A First Course in Probability, 7th Edition, Prentice Hall, 2006.

269. J. Rothe, Complexity Theory and Cryptography, Springer, 2005.

270. J. J. Rotman An Introduction to the Theory of Groups, Springer-Verlag, 1994.

271. RSA Laboratories, “PKCS #1: RSA Encryption Standard”, Version 1.4, 1993;
Version 2.1, 2002.

Bibliography 247

272. Y. Sakai and K. Sakurai, “A New Attack with Side Channel Leakage During
Exponent Recoding Computations”, Cryptographic Hardware and Embedded
Systems - CHES 2004, Lecture Notes in Computer Science 3156, Springer,
2004, pp 298–311.

273. I. K. Salah, A. Darwish and A. Oqeili, “Mathematical Attacks on RSA Cryp-
tosystem”, Journal of Computer Science, 2 (8), 2006, pp665–671.

274. A. Salomaa, Public-Key Cryptography, 2nd Edition, Springer-Verlag, 1996.

275. W. Schindley, “A Combined Timing and Power Attack”, Proceedings of the
Public-Key Cryptography (PKC 2002), Lecture Notes in Computer Science
2274, Springer, 2002, pp 263–279.

276. O. Schirokauer, D. Weber, and T. Denny, “Discrete Logarithms, the Effec-
tiveness of the Index Calulus Method”, Algorithmic Number Theory, Lecture
Notes in Computer Science 1122, Springer, 1996, pp 337–361.

277. B. Schneier, Applied Cryptography – Protocols, Algorithms, and Source Code
in C, 2nd Edition, John Wiley & Sons, 1996.

278. B. Schneier, “The Secret Story of Non-Secret Encryption”, Crypto-Gram
Newsletter, Counterpane Systems, May 15, 1998.

279. W. Schindler, “A Timing Attack against RSA with the Chinese Remainder
Theorem ”, Cryptographic Hardware and Embedded Systems - CHES 2000,
Lecture Notes in Computer Science 1965, Springer, 2000, pp 109–124.

280. W. Schindler and C. D. Walter, “More Detail for a Combined Timing and
Power Attack against Implementations of RSA”, Cryptography and Coding,
Lecture Notes in Computer Science 2898, Springer, 2003, 245–263.

281. C. P. Schnorr, “Efficient Identification and Signatures for Smart Cards”, Ad-
vances in Cryptography, CRYPTO ’89, Proceedings, Lecture Notes in Computer
Science 435, Springer, 1990, pp 239–252.

282. R. Schoof, “Elliptic Curves over Finite Fields and the Computation of Square
Roots mod p”, Mathematics of Computation, 44, (1985), pp 483–494.

283. M. R. Schroeder, Number Theory in Science and Communication, 3rd Edition,
Springer Series in Information Sciences 7, Springer-Verlag, 1997.

284. A. Shamir, “How to Share a Secret”, Communications of the ACM, 22,
11(1979), pp 612–613.

285. C. Shannon, “Communication Theory of Secrecy Systems”, Bell System Tech-
nical Journal, 28, 1949, pp 656–715.

286. K. Shen, J. N. Crossley and A. W.-C. Lun, The Nine Chapters on the Mathe-
matical Art: Companion and Commentary, Oxford University Press and Beijing
Sicience Press, 1999.

287. P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”, Proceedings of 35th Annual Symposium on Foundations of Com-
puter Science, IEEE Computer Society Press, 1994, pp 124–134.

288. P. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”, SIAM Journal on Computing, 26,
5(1997), pp 1484–1509.

289. T. O. Silva, “Goldbach Conjecture Verification”,
http://www.ieeta.pt/∼tos/goldbach.html, 2007.

290. J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergrad-
uate Texts in Mathematics, Springer-Verlag, 1992.

248 Bibliography

291. J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math-
ematics 106, Springer-Verlag, 1994.

292. J. H. Silverman, “The Xedni Calculus and the Elliptic Curve Discrete Loga-
rithm Problem”, Designs, Codes and Cryptography, 20, 2000, pp 5-40.

293. J. H. Silverman, “The Xedni Calculus and the Elliptic Curve Discrete Loga-
rithm Problem”, Designs, Codes and Cryptography, 20, 2000, pp 5-40.

294. J. H. Silverman, A Friendly Introduction to Number Theory, 3rd Edition,
Prentice-Hall, 2006.

295. J. H. Silverman and J. Suzuki, “Elliptic Curve Discrete Logarithms and the
Index Calculus”, Advances in Cryptology – ASIACRYPT ’98, Lecture Notes in
Computer Science 1514, Springer, 1998, pp 110–125.

296. R. D. Silverman, ‘The Multiple Polynomial Quadratic Sieve”, Mathematics of
Computation, 48, (1987), pp 329–339.

297. R. D. Silverman, “A Perspective on Computational Number Theory”, Notices
of the American Mathematical Society, 38, 6(1991), pp 562–568.

298. R. D. Silverman, “Massively Distributed Computing and Factoring Large In-
tegers”, Communications of the ACM, 34, 11(1991), pp 95–103.

299. D. R. Simon, “On the Power of Quantum Computation”, Proceedings of the
35th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Press, 1994, pp 116–123.

300. G. J. Simons and M. J. and Morris, A Weakness Privacy Protocol using the
RSA Crypto Algorithm, Crypotologia, 1, 1977, pp 406–411.

301. G. J. Simons, A Weakness Privacy Protocol using the RSA Crypto Algorithm,
Crypotologia, 1, 1983, pp 180–182.

302. S. Singh, The Code Book – The Science of Secrecy from Ancient Egypt to
Quantum Cryptography, Fourth Estate, London, 1999.

303. S. Singh, The Science of Secrecy – The Histroy of Codes and Codebreaking,
Fourth Estate, London, 2000.

304. M. Sipser, Introduction to the Theory of Computation, 2nd Edition, Thomson,
2006.

305. P. Smith and M. Lennon, “LUC: A New Public-Key System”, Proceedings of
Ninth International Conference on Information Security, IFIP/Sec ’93, Toronto,
May 12-14, 1993, pp 103-117.

306. R. Steinfeld, S. Contini, H. Wang and J. Pieprzyk, “Converse Results to the
Wiener Attack on RSA”, Public Key Cryptography - PKC 2005, Lecture Notes
in Computer Science 3386, 2005, pp 184–198.

307. R. Solovay and V. Strassen, “A Fast Monte-Carlo Test for Primality”, SIAM
Journal on Computing, 6, 1(1977), 84–85. “Erratum: A Fast Monte-Carlo Test
for Primality”, SIAM Journal on Computing, 7, 1(1978), page 118.

308. J. Stillwell, Elements of Number Theory, Springer-Verlag, 2000.

309. V. Shoup, A Computational Introduction to Number Theory and Algebra,
Cambridge University Press, 2005.

310. M. Stamp and R. M. Low, “Applied Cryptanalysis: Breaking Ciphers in the
Real World”, Wiley, 2007.

311. D. R. Stinson, Cryptography: Theory and Practice, 3rd Edition, Chapman &
Hall/CRC Press, 2005.

312. Stopple, A Primer of Analytic Number Theory – From Pythagoras to Rie-
mann, Cambridge University Press, 2003.

Bibliography 249

313. V. Strassen, “The Computational Complexity of Continued Fractions”, SIAM
Journal on Computing, 12, (1) 1983, pp 1–27.

314. H. M. Sun and M. E. Wu, “An Approach Towards Rebalanced RSA-CRT
with Short Public Exponent”, Cryptology ePrint Archive, Report 2005/053,
2005. http://eprint.iacr.org/.

315. W. Trappe and L. Washington, Introduction to Cryptography with Coding
Theory, 2nd Edition, Prentice-Hall, 2006.

316. A. Turing, “On Computable Numbers, with an Application to the Entschei-
dungsproblem”, Proceedings of the London Mathematical Society, Series 2 42,
pp 230–265 and 43, pp 544–546.

317. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Tannoni, M. H. Sherwood,
and I. L. Chuang, “Experiemental Realization of Shor’s Quantum Factoring
Algorithm Uisng Nuclear Magnetic Resonance”, Nature, 414, 20/27 December
2001, pp 883–887.

318. H. van Tilburg, “On the McEliece Public-Key Cryptography”, Advances in
Cryptology – Crypto’88, Lecture Notes in Computer Science 403, Springer,
1989, pp 119–131.

319. H. van Tilborg, Fundamentals of Cryptography, Kluwer Academic Publishers,
1999.

320. H. van Tilborg (editor), Encyclopedia of Cryptography and Security, Springer,
2005.

321. S. S. Wagstaff, Jr., Cryptanalysis of Number Theoretic Ciphers, Chapman &
Hall/CRC Press, 2002.

322. C. D. Walter, “Seeing through MIST Given a Small Fraction of an RSA Private
Key”, Topics in Cryptology - CT-RSA 2003, Lecture Notes in Computer Science
2612, Springer, 2003, pp 391–402.

323. B. de Weger, “Cryptanalysis of RSA with Small Prime Difference”, Applicable
Algebra in Engineering, Communication and Computing, 13, (1) 2002, pp 17–
28.

324. H. Wiener, “Cryptanalysis of Short RSA Secret Exponents”, IEEE Transac-
tions on Information Theory, 36, 3(1990), pp 553–558.

325. A. Wiles, “Modular Elliptic Curves and Fermat’s Last Theorem”, Annals of
Mathematics, 141 (1995), pp 443–551.

326. H. S. Wilf, Algorithms and Complexity, 2nd Edition, A. K. Peters, 2002.

327. H. C. Williams, “A Modification of the RSA Public-Key Encryption Proce-
dure”, IEEE Transactions on Information Theory, 26, (1980), pp 726–729.

328. H. C. Williams, “The Influence of Computers in the Development of Number
Theory”, Computers & Mathematics with Applications, 8, 2(1982), pp 75–93.

329. H. C. Williams, “A p+1 Method of Factoring”, Mathematics of Computation,
39, (1982), pp 225–234.

330. H. C. Williams, “Factoring on a Computer”, Mathematical Intelligencer, 6,
3(1984), pp 29–36.

331. H. C. Williams, “An M3 Public-Key Encryption Scheme”, Advances in Cryp-
tology - CRYPTO ’85, Lecture Notes in Computer Science 218, Springer, 1986,
pp 358–368.

332. H. C. Williams, Édouard Lucas and Primality Testing, John Wiley & Sons,
1998.

250 Bibliography

333. C. P. Williams and S. H. Clearwater, Explorations in Quantum Computation,
The Electronic Library of Science (TELOS), Springer-Verlag, 1998.

334. W. Windsteiger and Bruno Buchberger, “Gröbner: A Library for Computing
Gröbner Bases based on SACLIB, RISC-Linz, Austra, 16 March 1995, 106 pages.

335. S. Y. Yan, Number Theory for Computing, 2nd Edition, Springer-Verlag, 2002.

336. S. Y. Yan, “Computing Prime Factorization and Discrete Logarithms: From
Index Calculus to Xedni Calculus”, International Journal of Computer Mathe-
matics, 80, 5(2003), pp 573–590.

337. S. Y. Yan, Primality Testing and Integer Factorization in Public-Key Cryp-
tography, Advances in Information Security 11, Kluwer, 2004.

338. S. M. Yen, S. Kim, S. Lim and S Moon, “RSA Speedup with Residue Num-
ber System Immune against Hardware Fault Cryptanalysis”, Information Secu-
rity and Cryptology - ICISC 2001, Lecture Notes in Computer Science 2288,
Springer, 2002, pp 1-74.

Index

BPP, 12
EXP, 11
NP, 10
NP-Completeness, 12
NP-hard, 12
NPC, 12
NPH, 12
P, 10
PSC, 12
PSH, 12
RP, 12
ZPP, 12
ζ(s), 43
eth root attack, 159
NP-SPACE, 13
P-SPACE, 13
“p− 1” factoring, 94
“p± 1” and ECM Attacks, 94
isprime, 40

AKS test, 39
anti-power attack, 216
anti-timing attack, 212
arithmetic progression of consecutive

primes, 45, 46
arithmetic progression of primes, 45
asymmetric key cryptography, 60
attacks on PKCS#1, 221
authentication, 56
authorization, 56

Baby-Step Giant-Step attack, 115
blinding attack, 151
broadcasting attack, 176

chosen plaintext attack, 152
chosen-ciphertext attack, 60, 152, 221
chosen-plaintext attack, 60, 221
Church-Turing thesis, 8
ciphers, 55
ciphertext, 55

ciphertext-only attack, 59
coding-based cryptography, 225
coin-tossing states, 10
common modulus attack, 161
complete quotients, 28
complexity classes, 9
complexity of Euclid’s algorithm, 20
computable or uncomputable, 8
computationally infeasible, 59
computationally secure, 59
conditionally unbreakable, 59
confidentiality, 56
Continued FRACtion (CFRAC)

method, 92
continued fraction algorithm, 29
convergent, 30
convergents, 31
Coppersmith theorem, 170
correctness of Euclid’s algorithm, 19
cryptanalysis, 55, 57
cryptanalytic attacks, 57
cryptographic system, 56
cryptography, 55
cryptology, 55
cryptosystem, 56
cyclic attack, 164

decryption, 55
decryption oracle, 221
deterministic encryption, 84
Diophantine Attack, 190
direct algorithmic attacks, 149
discrete logarithm attacks, 111
Discrete Logarithm Problem (DLP), 51
dividend, 17
division theorem, 17
divisor, 18
DLP problem, 51

ECDLP problem, 52
ECPP test, 40

251

252 Index

effective procedure, 50
electromagnetic (analysis) attacks, 216
ElGamal cryptosystem, 83
elite class, 12
elliptic curve analogue of RSA, 80
elliptic curve based cryptography, 224
Elliptic Curve Discrete Logarithm

Problem (ECDLP), 52
elliptic curve test, 41
encryption, 55
Euclid’s algorithm, 18
Euclid’s Elements, 22
extended Diophantine attack, 195
extended Euclid’s algorithm, 23

factor, 18
fast group operations on elliptic curves,

36
fast modular exponentiation, 34
Fermat factoring attack, 93
Fermat’s factoring algorithm, 94
fixed-point attack, 164
forward search attack, 150, 166
Fundamental Theorem of Arithmetic,

48

glitch, 221
Goldbach Conjecture, 42
greatest common divisor (gcd), 18
guessing φ(N) attack, 152
guessing d attack, 155
guessing plaintext attack, 150

IFP problem, 48
implementation attacks, 207
index calculus, 98
index calculus algorithm, 125
index calculus attacks, 122
index calculus method, 125
indirect algorithmic attacks, 149
information-theoretic security, 58
integer factorization attacks, 91
Integer Factorization Problem (IFP),

48
integrity, 56
intractable number-theoretic problems,

1
intractable or infeasible problems, 1
inverse of RSA function, 71
invertible function, 62

Kerckhoff principle, 57
KMOV cryptosystem, 81
known-plaintext attack, 59

lattice attack, 183
lattice-based cryptography, 227
Lehman’s method, 92
Lenstra’s Elliptic Curve Method

(ECM), 93, 96
linear combination, 19
Lucas sequences, 79

mean, 211
Mersenne primes, 44
message salting, 166
micro-architectural cryptanalysis, 222
Miller-Rabin test, 40
Modular Polynomial Root Finding

Problem (MPRFP), 52
Montgomery form, 213
MPRFP problem, 52
multiple, 18
mutual division algorithm, 22
mutual subtraction algorithm, 22

non-repudiation, 56
normal d, 113
NTRU, 227
Number Field Sieve (NFS), 92, 126
Number Field Sieve attack, 105

odd perfect number, 45
one-time pad (OTP), 58
one-way function, 62
one-way trap-door function, 71
OpenSSL, 213
order computing, 137
order of a group, 137
order of an element a in group G, 137
order of an element x modulo N , 137

padding process, 151
partial private key exposure attacks,

201
partial quotients, 28
perfect number, 44, 45
perfect secrecy, 58
PFP Problem, 48
PKCS#1, 221
plaintext, 55
polarization, 229
Pollard’s ρ-method, 93
Pollard’s “p− 1” method, 93
polynomial security, 85
polynomial-time computable, 11
polynomial-time reducible, 11
polynomially secure, 59
power (analysis) attacks, 215

Index 253

power attacks, 207
powering attack, 215
practical secure, 59
practical/conjectured secure, 59
primality testing, 38
Prime Factorization Problem (PFP), 48
Prime Number Theorem, 39
privacy, 56
private Exponent Attacks, 189
private key, 60
probabilistic encryption, 85, 86
probabilistic Turing machine (PTM),

10
proper divisor, 18
provably secure, 59
public exponent attacks, 169
public key, 60
public-key cryptography, 1, 60
public-key cryptosystem, 65

QRP Problem, 50
Quadratic Residuosity Problem (QRP),

50, 86
Quadratic Sieve attack, 98
Quadratic Sieve/Multiple Polynomial

Quadratic Sieve (QS/MPQS), 92
quantum algorithm for discrete

logarithms, 146
quantum algorithm for integer

factorization, 142
quantum computing attacks, 135
quantum cryptography, 229
quantum discrete logarithm attack, 146
quantum integer factorization attack,

142
quantum order computing attack, 139
quantum order finding attack, 140
quantum register, 140, 143
qubit, 140, 143
quotient, 17

Rabin’s M2 encryption, 74
random fault attacks, 216, 221
randomized encryption, 85
randomized Turing machine (RTM), 10
rectilinear polarization, 229
remainder, 17
RFP Problem, 50
Riemann ζ-function, 43
Riemann Hypothesis, 43
Root Finding Problem (RFP), 50, 159
RSA assumption, 72
RSA conjecture, 72

RSA CRT-private exponents, 199
RSA function, 71
RSA problem, 72, 91
RSA public-key cryptography, 1
RSA public-key cryptosystem, 66
RSA-type cryptosystems, 73

salting process, 151
secret key, 60
secret-key cipher, 57
secret-key cryptography, 60
secret-key cryptosystem, 57
secret-key encryption, 57
security, 58
semantic security, 85
Shanks’ baby-step giant-step method

for discrete logarithms, 116
Shanks’ SQUFOF method, 92
short e attacks for same messages, 172
short e attacks for related message, 177
short pad attack, 183
short plaintext attack, 150
Shortest Vector Problem (SVP), 53
side-channel attacks, 149, 207, 222
Silver–Pohlig–Hellman algorithm, 118
Silver–Pohlig–Hellman attack, 118
simple elementary attacks, 149
sliding windows, 213
small inverse problem, 196
small private CRT-exponent attack,

198
small roots, 170
small solutions, 170
solvable or computable problems, 1
SQRT problem, 51
square root method, 118
Square Root Problem (SQRT), 51
SSL (Secure Sockets Layer), 212
standard derivation, 211
stereotyped messages, 184
superencryption attack, 164
SVP problem, 53
symmetric key cryptography, 60

template attacks, 216
The Chinese Remainder Theorem

(CRT), 32
time attacks on OpenSSL, 212
timing attacks, 207, 209
tractable or feasible problems, 1
trapdoor, 63
trapdoor one-way function, 62, 63
trial division, 93

254 Index

Turing machine, 5
Twin Prime Conjecture, 44

unbreakability, 58
unconditionally secure, 58
unconditionally unbreakable, 58
unsolvable or uncomputable problems,

1

variance, 211

Williams’ M2 encryption, 76
Williams’ M3 encryption, 78

About the Author

Dr. Song Y. Yan is currently Professor of Computer Sci-
ence and Mathematics and Director of the Institute for Re-
search in Applicable Computing at the University of Bedford-
shire, England. He also held various visiting professorships in
the Center for Discrete Mathematics and Theoretical Com-
puter Science (DIMACS) of Rutgers/Princeton University,
Columbia University, University of Toronto, Australian Na-
tional University, and South China University of Technology. Most recently,
he is Visiting Professor at the Massachusetts Institute of Technology. Majored
in both Computer Science and Mathematics, he obtained a PhD in Number
Theory in the Department of Mathematics at the University of York, Eng-
land. His current research and teaching interests include Number Theory,
Complexity Theory, Coding Theory, Cryptography and Information Secu-
rity. He published, among others, the following three well-received books in
number theory and cryptography:
[1] Number Theory for Computing, Springer, First Edition, 2000; Sec-

ond Edition, 2002; Polish Translation, 2006 (Polish Scientific Publishers
PWN); Chinese Translation, 2007 (Tsinghua University Press).

[2] Primality Testing and Integer Factorization in Public-Key Cryptography,
Springer, First Edition, 2004; Second Edition, 2008.

[3] Perfect, Amicable and Sociable Numbers: A Computational Approach,
World Scientific, 1996.

